OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 2 — Jan. 10, 2008
  • pp: 213–223

Depth profiling of ion implanted materials with skewed doping distributions using Fourier transform infrared spectroscopy

Charalambos C. Katsidis  »View Author Affiliations


Applied Optics, Vol. 47, Issue 2, pp. 213-223 (2008)
http://dx.doi.org/10.1364/AO.47.000213


View Full Text Article

Enhanced HTML    Acrobat PDF (1600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The applicability of a general transfer-matrix method for optical analysis of multilayersreported earlier [Katsidis and Siapkas, Appl. Opt. 41, 3978 (2002)] is being extended so as to simulate asymmetric implantation doping profiles using distributions with four moments. The sensitivity of infrared reflectance spectra regarding the variation of the first four moments of a Pearson free carrier distribution is demonstrated. Experimental data of 1.5   MeV as well as 2.5   MeV As implantation into p-Si followed by annealing at 1100 ° C are presented, suggesting the need to use two joined Pearson IV distribution segments in the simulation of annealed profiles. A twin peak observed in the 1.5   MeV case is confirmed by Rutherford backscattering analysis.

© 2008 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(160.6000) Materials : Semiconductor materials
(260.2030) Physical optics : Dispersion
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Spectroscopy

History
Original Manuscript: October 26, 2007
Manuscript Accepted: November 19, 2007
Published: January 8, 2008

Citation
Charalambos C. Katsidis, "Depth profiling of ion implanted materials with skewed doping distributions using Fourier transform infrared spectroscopy," Appl. Opt. 47, 213-223 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-2-213


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Pramanik and A. N. Saxena, "MeV implantation for VLSI," Nucl. Instrum. Methods Phys. Res. B 10-11, 493-497 (1985). [CrossRef]
  2. M. Takahasi, J. Nakata, and K. Kajiyama, "High energy As+ ion implantation into Si-arsenic profiles and electrical activation characteristics," Jpn. J. Appl. Phys. 20, 2205-2209 (1981). [CrossRef]
  3. H. Wong, E. Deng, N. W. Cheung, P. K. Chu, E. M. Strathman, and M. D. Strathman, "Profile studies of MeV ions implanted into Si," Nucl. Instrum. Methods Phys. Res. B 21, 447-451 (1987). [CrossRef]
  4. G. Lulli, M. Bianconi, A. Parisini, S. Sama, and M. Servidori, "Damage profiles in high-energy As implanted Si," J. Appl. Phys. 88, 3993-3999 (2000). [CrossRef]
  5. S. Saito, S. Shishiguchi, K. Hamada, and T. Hayashi, "Dopant profile and defect control in ion implantation by RTA with high ramp-up rate," Mater. Chem. Phys. 54, 49-53 (1998). [CrossRef]
  6. Y. Li, C. Tan, Y. Xia, J. Zhang, C. Xue, U. Xu, and P. Liu, "2.0-MeV Er+ implanted in silicon: depth distribution, damage profile and annealing behaviour," Appl. Phys. A 71, 689-693 (2000). [CrossRef]
  7. D. I. Siapkas, N. Hatzopoulos, C. C. Katsidis, T. Zorba, C. L. Mitsas, and P. L. F. Hemment, "Structural and compositional characterization of high energy separation by implantation of oxygen structures using infrared spectroscopy," J. Electrochem. Soc. 143, 3019-3032 (1996). [CrossRef]
  8. N. Hatzopoulos, W. Skorupa, and D. I. Siapkas, "Double SIMOX structures formed by sequential high energy oxygen implantation into silicon," J. Electrochem. Soc. 147, 354-362 (2000). [CrossRef]
  9. G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Camera, and C. Cellini, "Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si," J. Appl. Phys. 82, 5958-5964 (1997). [CrossRef]
  10. J. F. Ziegler, "SRIM-2003," Nucl. Instrum. Methods Phys. Res. B 219-220, 1027-1036 (2004). [CrossRef]
  11. P. Normand, D. Tsoukalas, N. Guillemot, and P. Chenevier, "A pile-up phenomenon during arsenic diffusion in silicon-on-insulator structures formed by oxygen implantation," J. Appl. Phys. 66, 3585-3589 (1989). [CrossRef]
  12. A. K. Robinson, K. J. Reeson, and P. L. F. Hemment, "Redistribution and electrical activation of implanted arsenic in silicon on insulator substrates formed by oxygen ion implantation," J. Appl. Phys. 68, 4340-4342 (1990). [CrossRef]
  13. C. C. Katsidis, D. I. Siapkas, A. K. Robinson, and P. L. F. Hemment, "Formation of conducting and insulating layered structures in Si by ion implantation. Process control using FTIR spectroscopy," J. Electrochem. Soc. 148, G704-G716 (2001). [CrossRef]
  14. J. J. Hamilton, B. Colombeau, J. A. Sharp, N. E. B. Cowern, K. J. Kirkby, E. J. H. Collart, M. Bersani, and D. Giubertoni, "Effect of buried Si/SiO2 interface on dopant and defect evolution in preamorphizing implant ultrashallow junction," J. Vac. Sci. Technol. B 24, 442-445 (2006). [CrossRef]
  15. R. Gwilliam, S. Gennaro, G. Claudio, B. J. Sealy, C. Mulcahy, and S. Biswas, "Ultra shallow junction formation and dopant activation study of Ga implanted Si," Nucl. Instrum. Methods Phys. Res. B 237, 121-125 (2005). [CrossRef]
  16. A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, and W. Vandervorst, "P implantation doping of Ge: diffusion, activation, and recrystallization," J. Vac. Sci. Technol. B 24, 494-498 (2006). [CrossRef]
  17. L. Romano, A. M. Piro, V. Privitera, E. Rimini, G. Fortunato, B. G. Svensson, M. Foad, and M. G. Grimaldi, "Mechanism of deactivation and clustering of B in Si at extremely high concentration," Nucl. Instrum. Methods Phys. Res. B 253, 50-54 (2006). [CrossRef]
  18. J. W. Mayer and S. S. Lau, Electronic Materials Science: For Integrated Circuits in Si and GaAs (Macmillan, 1990).
  19. J. Lindhard, M. Scharff, and H. E. Schiott, "Range concepts and heavy ion ranges," K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 33, 1-41 (1963).
  20. M. D. Giles, "Ion implantation," in VLSI Technology, S.M.Sze, ed. (McGraw-Hill, 1988), pp. 327-374.
  21. R. B. Fair, "Diffusion and ion implantation in silicon," in Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), G. E. McGuire, ed. (Noyes, 1988), pp. 455-540.
  22. H. Ryssel, G. Prinke, K. Haberger, K. Hoffmann, K. Müller, and R. Henkelmann, "Range parameters of boron implanted into silicon," Appl. Phys. 24, 39-43 (1981). [CrossRef]
  23. F. Jahnel, H. Ryssel, G. Prinke, K. Hoffmann, K. Müller, J. Biersack, and R. Henkelmann, "Description of arsenic and boron profiles implanted in SiO2, Si3N4 and Si using Pearson distributions with four moments," Nucl. Instrum. Methods 181-183, 223-229 (1981). [CrossRef]
  24. D. G. Ashworth, R. Oven, and B. Mundin, "Representation of ion implantation profiles by Pearson frequency distribution curves," J. Phys. D 23, 870-876 (1990). [CrossRef]
  25. A. Barthel, J. Lorenz, and H. Ryssel, "Two-dimensional simulation of ion implanted profiles using a personal computer," Nucl. Instrum. Methods Phys. Res. B 37-38, 312-316 (1989). [CrossRef]
  26. L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, "Simulation of high energy implantation profiles in crystalline silicon," Microelectron. Eng. 19, 495-498 (1992). [CrossRef]
  27. C. C. Katsidis and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference," Appl. Opt. 41, 3978-3987 (2002). [CrossRef] [PubMed]
  28. C. C. Katsidis, "Study of the effects of ion implantation on the optical, structural and electrical properties of silicon and SIMOX structures using fast Fourier transform spectroscopy in the infrared," Ph.D. dissertation (Aristotle University of Thessaloniki, 2002).
  29. W. Karstens, D. Bobela, and D. Y. Smith, "Impurity and free-carrier effects on the far-infrared dispersion spectrum of silicon," J. Opt. Soc. Am. A 23, 723-729 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited