OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3701–3721

Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations

Nicholas R. Nalli, Peter J. Minnett, and Paul van Delst  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3701-3721 (2008)
http://dx.doi.org/10.1364/AO.47.003701


View Full Text Article

Enhanced HTML    Acrobat PDF (7418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although published sea surface infrared (IR) emissivity models have gained widespread acceptance for remote sensing applications, discrepancies have been identified against field observations obtained from IR Fourier transform spectrometers at view angles 40 ° . We therefore propose, in this two-part paper, an alternative approach for calculating surface-leaving IR radiance that treats both emissivity and atmospheric reflection in a systematic yet practical manner. This first part presents the theoretical basis, development, and computations of the proposed model.

© 2008 Optical Society of America

OCIS Codes
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(280.6780) Remote sensing and sensors : Temperature
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 28, 2007
Revised Manuscript: April 23, 2008
Manuscript Accepted: May 26, 2008
Published: July 11, 2008

Citation
Nicholas R. Nalli, Peter J. Minnett, and Paul van Delst, "Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations," Appl. Opt. 47, 3701-3721 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988). [CrossRef]
  2. K. Yoshimori, K. Itoh, and Y. Ichioka, “Thermal radiative and reflective characteristics of a wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886-1893 (1994). [CrossRef]
  3. K. Yoshimori, K. Itoh, and Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236-6247 (1995). [CrossRef] [PubMed]
  4. P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996). [CrossRef]
  5. X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 μm: modeling and validation,” Appl. Opt. 36, 1-11 (1997).
  6. D. E. Freund, R. I. Joseph, D. J. Donohue, and K. T. Constantikes, “Numerical computations of rough sea surface emissivity using the interaction probability density,” J. Opt. Soc. Am. A 14, 1836-1849 (1997). [CrossRef]
  7. J. A. Shaw and C. Marston, “Polarized infrared emissivity for a rough water surface,” Opt. Express 7, 375-380 (2000). [CrossRef] [PubMed]
  8. N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001). [CrossRef]
  9. B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003). [CrossRef]
  10. C. Bourlier, “Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics,” Appl. Opt. 44, 4335-4349 (2005). [CrossRef] [PubMed]
  11. C. Bourlier, “Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band,” Appl. Opt. 45, 6241-6254 (2006). [PubMed]
  12. K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006). [CrossRef]
  13. K. Caillault, S. Fauqueux, C. Bourlier, P. Simoneau, and L. Labarre, “Multiresolution optical characteristics of rough sea surface in the infrared,” Appl. Opt. 46, 5471-5481 (2007). [CrossRef] [PubMed]
  14. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun's glitter,” J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  15. C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63-78 (1955).
  16. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996). [CrossRef]
  17. G. L. Stephens, Remote Sensing of the Lower Atmosphere: An Introduction (Oxford University, 1994), p. 523.
  18. P. van Delst, “JCSDA infrared sea surface emissivity model,” in Proceedings of the 13th International TOVS Study Conference (Sainte-Adèle, 2003).
  19. M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006). [CrossRef]
  20. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001). [CrossRef]
  21. J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005). [CrossRef] [PubMed]
  22. M. Sidran, “Broadband reflectance and emissivity of specular and rough water surfaces,” Appl. Opt. 20, 3176-3183(1981). [CrossRef] [PubMed]
  23. A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995). [CrossRef]
  24. S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An Introduction (Academic, 1995), p. 466.
  25. N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998). [CrossRef]
  26. X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909-924 (2002). [CrossRef] [PubMed]
  27. I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004). [CrossRef]
  28. S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005). [CrossRef]
  29. R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005). [CrossRef]
  30. W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).
  31. C. J. R. Sheppard, “Imaging of random surfaces and inverse scattering in the Kirchhoff approximation,” Waves Random Media 8, 53-66 (1998). [CrossRef]
  32. P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643-4649 (1967). [CrossRef]
  33. P. M. Saunders, “Radiance of sea and sky in the infrared window 800-1200 cm−1,” J. Opt. Soc. Am. 58, 645-652(1968). [CrossRef]
  34. C. R. Zeisse, “Radiance of the ocean horizon,” J. Opt. Soc. Am. A 12, 2022-2030 (1995). [CrossRef]
  35. C. R. Zeisse, C. P. McGrath, K. M. Littfin, and H. G. Hughes, “Infrared radiance of the wind-ruffled sea,” J. Opt. Soc. Am. A 16, 1439-1452 (1999). [CrossRef]
  36. X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).
  37. N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.
  38. N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002). [CrossRef]
  39. C. C. Borel, “ARTEMISS--an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data,” Unclassified Report LA-UR-027907 (Los Alamos National Laboratory, 2003).
  40. S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).
  41. L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).
  42. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  43. H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975). [CrossRef]
  44. D. J. Segelstein, “The complex refractive index of water,” Master's dissertation, (University of Missouri-Kansas City, 1981), p. 167.
  45. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714-1719 (1989). [CrossRef] [PubMed]
  46. J. E. Bertie and Z. Lan, “Infrared intensities of liquids. XX. The intensity of the OH stretching band of liquid water revisited and the best current values of the optical constants of H2O (l) at 25 C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047-1057 (1996). [CrossRef]
  47. D. Friedman, “Infrared characteristics of ocean water (1.5-15 μm),” Appl. Opt. 8, 2073-2078 (1969). [CrossRef] [PubMed]
  48. S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res. 93, 15467-15472 (1988). [CrossRef]
  49. X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999). [CrossRef]
  50. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited