OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3795–3802

Reexamination of depolarization in lidar measurements

Gary G. Gimmestad  »View Author Affiliations

Applied Optics, Vol. 47, Issue 21, pp. 3795-3802 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Almost all of the depolarization papers in the lidar literature employ a physically inappropriate notation and they use a definition of the depolarization ratio that is not linear in the quantity of interest. This depolarization lidar legacy is misleading and confusing. In particular, subscripts meaning parallel and perpendicular do not apply to atmospheric parameters, such as the volume backscatter coefficient, because (for linear polarization) the two components of the backscattered light are polarized in the transmitted sense and completely unpolarized; the unpolarized component is not “perpendicular.” An analysis of lidar depolarization measurements with a particle scattering matrix recently provided in the literature yields algorithms for retrieving the depolarization parameter from either linear or circular depolarization lidar measurements. The analysis, notation, and definitions recommended here harmonize lidar depolarization analysis with radiative transfer theory, particle scattering theory, and standard polarization measurement techniques.

© 2008 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.5855) Scattering : Scattering, polarization
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 10, 2007
Revised Manuscript: May 31, 2008
Manuscript Accepted: June 9, 2008
Published: July 14, 2008

Gary G. Gimmestad, "Reexamination of depolarization in lidar measurements," Appl. Opt. 47, 3795-3802 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). [CrossRef]
  2. K. Sassen, “Polarization in Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 19-42.
  3. T. Murayama, “Ground-based network observation of Asian dust events of April 1988 in east Asia,” J. Geophys. Res. 106, 18345-18359 (2001). [CrossRef]
  4. L. R. Poole, G. S. Kent, M. P. McCormick, and W. H. Hunt, “Dual-polarization airborne lidar for observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389-392 (1990). [CrossRef]
  5. Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569-579 (2001).
  6. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
  7. L. J. Battan, Radar Meteorology (University of Chicago Press, 1959).
  8. S. R. Pal and A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530-1535 (1973).
  9. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  10. G. P. Gobbi, “Polarization lidar returns from aerosols and thin clouds: a framework for analysis,” Appl. Opt. 37, 5505-5508(1998). [CrossRef]
  11. F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999). [CrossRef]
  12. J. Biele, G. Beyerle, and G. Baumgarten, “Polarization lidar: correction of instrumental effects,” Opt. Express 7, 427-435(2000).
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  14. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  15. E. Hecht, Optics (Addison-Wesley, 1990).
  16. E. Collett, “Field Guide to Polarization,” in SPIE Field Guides, J. E. Greivenkamp, ed. (SPIE, 2005), Vol. FG05.
  17. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, “Novel polarization-sensitive micropulse lidar measurement technique,” Opt. Express 15, 2785-2790 (2007). [CrossRef]
  18. A. Gross, M. J. Post, and F. F. Hall, Jr., “Depolarization, backscatter, and attenuation of CO2 lidar by cirrus clouds,” Appl. Opt. 23, 2518-2522 (1984).
  19. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356-1358 (1995).
  20. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45, 4878-4887(2006). [CrossRef]
  21. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, “The depolarization--attenuated backscatter relation: CALIPSO lidar measurements vs. theory,” Opt. Express 15, 5327-5332 (2007). [CrossRef]
  22. E. W. Eloranta, “High spectral resolution lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.
  23. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  24. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42, 4389-4395 (2003). [CrossRef]
  25. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683-699 (2006).
  26. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, “Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles,” Appl. Opt. 40, 6587-6595 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited