OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3808–3816

Role of phase key in the double random phase encoding technique: an error analysis

David S. Monaghan, Guohai Situ, Unnikrishnan Gopinathan, Thomas J. Naughton, and John T. Sheridan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3808-3816 (2008)
http://dx.doi.org/10.1364/AO.47.003808


View Full Text Article

Enhanced HTML    Acrobat PDF (11871 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a numerical analysis of the double random phase encryption–decryption technique to determine how, in the case of both amplitude and phase encoding, the two decryption keys (the image- and Fourier-plane keys) affect the output gray-scale image when they are in error. We perform perfect encryption and imperfect decryption. We introduce errors into the decrypting keys that correspond to the use of random distributions of incorrect pixel values. We quantify the effects that increasing amounts of error in the image-plane key, the Fourier-plane key, and both keys simultaneously have on the decrypted image. Quantization effects are also examined.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(100.2000) Image processing : Digital image processing
(200.4740) Optics in computing : Optical processing

ToC Category:
Image Processing

History
Original Manuscript: February 13, 2008
Revised Manuscript: June 9, 2008
Manuscript Accepted: June 23, 2008
Published: July 15, 2008

Citation
David S. Monaghan, Guohai Situ, Unnikrishnan Gopinathan, Thomas J. Naughton, and John T. Sheridan, "Role of phase key in the double random phase encoding technique: an error analysis," Appl. Opt. 47, 3808-3816 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767-769 (1995). [CrossRef] [PubMed]
  2. B. Javidi, A. Sergent, G. S. Zhang, and L. Guibert, “Fault tolerance properties of a double phase encoding encryption technique,” Opt. Eng. 36, 992-998 (1997). [CrossRef]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887-889 (2000). [CrossRef]
  4. B. Javidi, N. Towghi, N. Maghzi, and S. C. Verrall, “Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption,” Appl. Opt. 39, 4117-4130(2000). [CrossRef]
  5. B. M. Hennelly and J. T. Sheridan, “Image encryption and the fractional Fourier transform,” Optik (Jena) 114, 251-265(2003). [CrossRef]
  6. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181-3186 (2006). [CrossRef] [PubMed]
  7. B. M. Hennelly and J. T. Sheridan, “Random phase and jigsaw encryption in the Fresnel domain,” Opt. Eng. 43, 2239-2249(2004). [CrossRef]
  8. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  9. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  10. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  11. G. Situ, U. Gopinathan, D. S. Monaghan, and J. T. Sheridan, “Cryptanalysis of optical security systems with significant output images,” Appl. Opt. 46, 5257-5262 (2007). [CrossRef] [PubMed]
  12. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253-10265 (2007). [CrossRef] [PubMed]
  13. “Lena test image,” http://sipi.usc.edu/database/.
  14. Matlab 7.0.1, http://www.mathworks.com/.
  15. G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25-31 (2000). [CrossRef]
  16. U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Polarization encoding and multiplexing of two-dimensional signals: application to image encryption,” Appl. Opt. 45, 5693-5700(2006). [CrossRef] [PubMed]
  17. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629-2638 (1998). [CrossRef]
  18. W. K. Pratt, Digital Image Processing, 4th ed. (Wiley-Interscience, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited