OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3817–3827

Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy

Haifeng Huang and Kevin K. Lehmann  »View Author Affiliations

Applied Optics, Vol. 47, Issue 21, pp. 3817-3827 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In cavity ring-down spectroscopy (CRDS), residual or stress-induced birefringence ( 10 7 10 6 rad ) of supermirrors will lift the polarization degeneracy of TEM 00 modes and generate two new polarization eigenstates in the cavity with small resonant frequency splitting ( 0.1 kHz ); the new eigenstates are nearly linearly polarized. When both modes are excited simultaneously, the intracavity polarization state will evolve as the energy decays in the cavity. Without polarization analysis, such mode beating would not be observable. However, real supermirrors have a linear polarization-dependent loss (dichroism) that leads to a change in the loss rate as the polarization state evolves and thus to deviation from the expected single-exponential decay. We develop a model for the evolution of the intracavity polarization state and intensity for a cavity with both birefringence and polarization-dependent loss in the mirrors. We demonstrate, experimentally, that these parameters (both magnitudes and directions) can be extracted from a series of measurements of the cavity decay and depolarization of the transmitted light.

© 2008 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: April 4, 2008
Manuscript Accepted: May 29, 2008
Published: July 15, 2008

Haifeng Huang and Kevin K. Lehmann, "Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy," Appl. Opt. 47, 3817-3827 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O'Keefe and D. A. G. Deacon , “Cavity ring-down optical spectrometer for absoption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544 (1988). [CrossRef]
  2. D. Romanini and K. K. Lehmann , “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287-6301 (1993). [CrossRef]
  3. K. K. Lehmann , “Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection,” U.S. patent 5,528,040 (18 June 1996 ).
  4. J. Dudek , P. Rabinowitz , K. K. Lehmann , and A. Velasquez , “Trace gas detection with cw cavity ring-down laser absorption spectroscopy,” presented at 52nd Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, 16-20 June 1997, paper 36 WG05.
  5. D. Romanini , A. A. Kachanov , N. Sadeghi , and F. Stoeckel , “Cw cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  6. H. Huang and K. K. Lehmann , “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745-8759 (2007). [CrossRef] [PubMed]
  7. A. E. Siegman , Lasers, 4th ed. (University Science Books, 1986), Sec. 21.7.
  8. D. Jacob , M. Vallet , F. Bretenaker , A. Le Floch , and M. Oger , “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671-673 (1995). [CrossRef] [PubMed]
  9. J. L. Hall , J. Ye , and L. Ma , “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000). [CrossRef]
  10. J. Morville and D. Romanini , “Sensitive birefringence measurement in a high-finesse resonator using diode laser optical self-locking,” Appl. Phys. B 74, 495-501 (2002). [CrossRef]
  11. J. Y. Lee , H. W. Lee , J. W. Kim , Y. S. Yoo , and J. W. Hahn , “Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique,” Appl. Opt. 39, 1941-1945 (2000). [CrossRef]
  12. A. Le Floch and R. Le Naour , “Theoretical existence and experimental evidence of basculating eigenvectors in a Fabry-Perot,” C. R. Acad. Sci. Ser. B 288, 225-228 (1979).
  13. V. Evtuhov and A. E. Siegman , “A 'twisted-mode' technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142-143 (1965). [CrossRef]
  14. M. Vallet , F. Bretenaker , A. Le Floch , R. Le Naour , and M. Oger , “The Malus Fabry-Perot interferometer,” Opt. Commun. 168, 423-443 (1999). [CrossRef]
  15. Y. L. Grand and A. Le Floch , “Sensitive dichroism measurements using eigenstate decay times,” Appl. Opt. 29, 1244-1246 (1990). [CrossRef] [PubMed]
  16. R. Engeln , G. Berden , E. van den Berg , and G. Meijer , “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997). [CrossRef]
  17. R. C. Jones , “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  18. J. B. Dudek , P. B. Tarsa , A. Velasquez , M. Wladyslawski , P. Rabinowitz , and K. K. Lehmann , “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599-4605 (2003). [CrossRef] [PubMed]
  19. The output of the cavity for monochromatic excitation will be in a state of definite polarization (i.e., describable by a Jones vector). However, when the finite line width of the excitation source is averaged over, the cavity output will be a partially incoherent superposition of different polarization vectors even if the input is in a definite polarization state independent of frequency.
  20. E. Hecht , Optics4th ed. (Addison-Wesley, 2002), p. 376.
  21. T. Muller , K. Wiberg , and P. Vaccaro , “Cavity ring-down polarimetry (CRDP): a new scheme for probing circular birefringence and circular dichroism in the gas phase,” J. Phys. Chem. A 104, 5959-5968 (2000). [CrossRef]
  22. C. Z. Tan and J. Arndt , “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids 60, 1689-1692 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited