OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3835–3845

Optical properties of internally mixed ammonium sulfate and soot particles—a study of individual aerosol particles and ambient aerosol populations

Annette Worringen, Martin Ebert, Thomas Trautmann, Stephan Weinbruch, and Günter Helas  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3835-3845 (2008)
http://dx.doi.org/10.1364/AO.47.003835


View Full Text Article

Enhanced HTML    Acrobat PDF (11006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical parameters of simulated ambient individual ammonium sulfate and soot-mixed particles were calculated using the discrete-dipole approximation method with different model geometries. Knowledge of the mixing state and the approximation by a suited idealized geometry reduces the errors of the optical properties by ± 50 % to ± 10 % . The influence of the soot content and the mixing state on the optical properties of the total aerosol was estimated. For the total aerosol population, the size distribution and the absolute soot content had the largest influence. The exact geometry of the ammonium sulfate and soot-mixed particles can be neglected.

© 2008 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 28, 2007
Revised Manuscript: May 31, 2008
Manuscript Accepted: June 3, 2008
Published: July 16, 2008

Citation
Annette Worringen, Martin Ebert, Thomas Trautmann, Stephan Weinbruch, and Günter Helas, "Optical properties of internally mixed ammonium sulfate and soot particles--a study of individual aerosol particles and ambient aerosol populations," Appl. Opt. 47, 3835-3845 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Schwartz, “The Whitehouse effect--shortwave radiative forcing of climate by anthropogenic aerosols: an overview,” J. Aerosol Sci. 27, 359-382 (1996). [CrossRef]
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423-430 (1992). [CrossRef]
  3. C. C. Chuang, J. E. Penner, K. E. Taylor, A. S. Grossman, and J. J. Walton, “An assessment of the radiative effects of anthropogenic sulphate,” J. Geophys. Res. 102, 3761-3778 (1997). [CrossRef]
  4. J. E. Penner, D. Hegg, and R. Leaitch, “Unravelling the role of aerosols in climate change,” Environ. Sci. Technol. 35, 332 A-340 A (2001).
  5. M. Pósfai, J. R. Anderson, P. R. Buseck, and H. Sievering, “Soot and sulfate aerosol particles in the remote marine troposphere,” J. Geophys. Res. 104, 21685-21693 (1999). [CrossRef]
  6. M. Pósfai and Á. Molnár, “Aerosol particles in the troposphere: a mineralogical introduction,” in Environmental Mineralogy, D. J. Vaughan and R. A. Wogelius, eds. (Eötvös University Press, 2000), pp. 197-242.
  7. M. Ebert, S. Weinbruch, A. Rausch, G. Gorzawski, G. Helas, P. Hofmann, and H. Wex, “The complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles,” J. Geophys. Res. 107, doi: 10.1029/2000JD000195, (2002). [CrossRef]
  8. B. P. Vester, M. Ebert, E. B. Barnert, J. Schneider, K. Kandler, L. Schütz, and S. Weinbruch, “Composition and mixing state of the urban background aerosol in the Rhein-Main Area (Germany),” Atmos. Environ. 41, 6102-6115 (2007). [CrossRef]
  9. M. Ebert, S. Weinbruch, P. Hoffmann, and H. M. Ortner, “The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis,” Atmos. Environ. 38, 6531-6545(2004). [CrossRef]
  10. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (John Wiley , 1998).
  11. P. Chýlek, G. Videen, D. Ngo, G. Pinnick, and J. D. Klett, “Effect of black carbon on the optical properties and climate forcing of sulphate aerosol,” J. Geophys. Res. 100, 16325-16332 (1995). [CrossRef]
  12. T. P. Ackerman and O. B. Toon, “Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles,” Appl. Opt. 20, 3661-3668 (1981).
  13. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res. 104, 15941-15954 (1999). [CrossRef]
  14. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34, 1421-1444 (2003). [CrossRef]
  15. P. Chýlek, V. Ramaswamy, and R. J. Cheng, “Effect of graphitic carbon on the albedo of clouds,” J. Atmos. Sci. 41, 3076-3084(1984). [CrossRef]
  16. J. V. Martins, P. Artaxo, C. Liousse, J. S. Reid, P. V. Hobbs, and Y. J. Kaufman, “Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil,” J. Geophys. Res. 103, 32041-32050(1998). [CrossRef]
  17. V. A. Markel and V. M. Shalaev, “Absorption of light by soot particles in micro-droplets of water,” J. Quant. Spectrosc. Radiat. Transfer 63, 321-339 (1999). [CrossRef]
  18. A. Fassi-Fihri, K. Shure, and R. Rosset, “Internal and external mixing in atmospheric aerosols by coagulation: impact on the optical and hygroscopic properties of the sulphate-soot system,” Atmos. Environ. 31, 1393-1402 (1997). [CrossRef]
  19. G. Myhre, F. Stordal, K. Restadt, and I. S. A. Isaksen, “Estimation of the radiative forcing due to sulphate and soot aerosols,” Tellus 50B, 463-477 (1998).
  20. A. Kirkevåg, T. Iversen, and A. Dahlback, “On radiative effects of black carbon and sulphate aerosols,” Atmos. Environ. 33, 2621-2635 (1999). [CrossRef]
  21. G. Lesins, P. Chýlek, and U. Lohmann, “A study of internal and external mixing scenarios and its effects on aerosol optical properties and direct radiative forcing,” J. Geophys. Res. 107, 4094 (2002). [CrossRef]
  22. N. Riemer, H. Vogel, B. Vogel, and F. Fiedler, “Modeling aerosols on the mesoscale-γ: treatments of soot aerosol and its radiative effects,” J. Geophys. Res. 108, doi:10.1029/2003JD003448 (2003). [CrossRef]
  23. M. Mallet, J. C. Roger, S. Despiau, J. P. Putaud, O. Dubovik, “A study of the mixing state of black carbon in urban zone,” J. Geophys. Res. 109, doi:10.1029/2003JD003940 (2004). [CrossRef]
  24. M. Kocifaj, M. Gangl, F. Kundracík, H. Horvath, G. Videen, “Simulation of the optical properties of single composite aerosols,” J. Aerosol Sci. 37, 1683-1695 (2006). [CrossRef]
  25. D. W. Mackowski and M. I. Mishchenko, “Calculations of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
  26. H. Laitinen and K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325-334 (1998). [CrossRef]
  27. T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 119-213(1998).
  28. A. Rausch, T. Trautmann, S. Weinbruch, and G. Helas, “Calculation of scattering and absorption of light by irregular shaped and mixed particles,” J. Aerosol Sci. 32, S419-S420(2001).
  29. A. Ansmann, U. Wandinger, A. Wiedensohler, and U. Leiterer, “Lindenberg Aerosol Characterization Experiment 1998 (LACE98): overview,” J. Geophys. Res. 107, doi: 10.1029/2000JD000233 (2002). [CrossRef]
  30. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  31. J. Miao, K.-P. Johnson, S. Buehler, and A. Kokhanovsky, “The potential of polarization measurements from space at mm and sub-mm wavelength for determining cirrus cloud parameters,” Atmos. Chem. Phys. Discuss. 3, 39-48 (2003).
  32. M. N. Eremenko, S. V. Petelina, A. Y. Zasetsky, B. Karlsson, C. P. Rinsland, E. J. Llewellyn, and J. J. Sloan, “Shape and composition of PMC particles derived from satellite remote sensing measurements,” Geophys. Res. Lett. 32, doi:10.1029/2005GL023013 (2005). [CrossRef]
  33. B. T. Draine and P. J. Flatau, “DDSCAT,” http://www.astro.princeton.edu/~draine (1998).
  34. B. T. Draine, “BHMIE,” http://atol.ucsd.edu/~pflatau/scatlib (1990).
  35. C. L. Joseph, “BHCOAT,” http://atol.ucsd.edu/~pflatau/scatlib/scatlib.htm (1992).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  37. B. T. Draine, “The discrete-dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), p. 690.
  38. N. A. Marley, J. S. Gaffney, J. B. Baird, C. A. Blazer, P. J. Drayton, and J. E. Frederick, “An empirical method for the determination of the complex refractive index of size-fractionated atmospheric aerosols for radiative transfer calculations,” Aerosol Sci. Technol. 34, 535-549 (2001). [CrossRef]
  39. J. R. Ouimette and R. C. Flagan, “The extinction coefficient of multi component aerosols,” Atmos. Environ. 16, 2405-2419(1982). [CrossRef]
  40. H. Horvath, “Influence of atmospheric aerosols upon the global radiation balance,” in Atmospheric Particles, R. M. Harrison and R. van Grieken, eds. (John Wiley, 1998), pp. 543-596.
  41. P. Chýlek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).
  42. P. Chýlek, G. Videen, D. J. W. Geldart, F. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 273-308.
  43. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  44. B. T. Draine and J. Goodmann, “Beyond Clausius-Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685-697 (1993). [CrossRef]
  45. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499(1994).
  46. H. Wex, C. Neusüss, M. Wendisch, F. Stratmann, C. Koziar, A. Keil, and A. Wiedensohler, “Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study,” J. Geophys. Res. 107, doi:10.1029/2000JD000234 (2002). [CrossRef]
  47. U. Bundke, G. Hänel, H. Horvarth, W. Kaller, S. Seidl, H. Wx, A. Wiedensohler, M. Wiegner, and V. Freudenthaler, “Aerosol optical properties during the Lindenberg Aerosol Characterization Experiment (LACE98),” J. Geophys. Res. 107, doi: 10.1029/2000JD000188 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited