OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3846–3859

Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm

Min Oo, Marco Vargas, Alex Gilerson, Barry Gross, Fred Moshary, and Sam Ahmed  »View Author Affiliations

Applied Optics, Vol. 47, Issue 21, pp. 3846-3859 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The recently developed short wave infrared (SWIR) atmospheric correction algorithm for ocean color retrieval uses long wavelength channels to retrieve atmospheric parameters to avoid bright pixel contamination. However, this retrieval is highly sensitive to errors in the aerosol model, which is magnified by the higher variability of aerosols observed over urban coastal areas. While adding extra regional aerosol models into the retrieval lookup tables would tend to increase retrieval error since these models are hard to distinguish in the IR, we explore the possibility that for highly productive waters with high colored dissolved organic matter, an estimate of the 412 nm channel water-leaving reflectance can be used to constrain the aerosol model retrieval and improve the water-leaving reflectance retrieval. Simulations show that this constraint is particularly useful where aerosol diversity is significant. To assess this algorithm we compare our retrievals with the operational SeaWiFS Data Analysis System (SeaDAS) SWIR and near infrared retrievals using in situ validation data in the Chesapeake Bay and show that, especially for absorbing aerosols, significant improvement is obtained. Further insight is also obtained by the intercomparison of retrieved remote sensing reflectance images at 443 and 551 nm , which demonstrates the removal of anomalous artifacts in the operational SeaDAS retrieval.

© 2008 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1690) Atmospheric and oceanic optics : Color
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 19, 2007
Revised Manuscript: May 12, 2008
Manuscript Accepted: May 13, 2008
Published: July 16, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Min Oo, Marco Vargas, Alex Gilerson, Barry Gross, Fred Moshary, and Sam Ahmed, "Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm," Appl. Opt. 47, 3846-3859 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  2. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004). [CrossRef]
  3. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897-912 (2000). [CrossRef]
  4. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005). [CrossRef]
  5. C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000). [CrossRef]
  6. URL: http://oceancolor.gsfc.nasa.gov/seadas/.
  7. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.
  8. R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).
  9. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  10. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32, L13606, doi:10.1029/2005GL022917 (2005). [CrossRef]
  11. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887-896 (2000). [CrossRef]
  12. B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007). [CrossRef]
  13. V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006). [CrossRef]
  14. R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005). [CrossRef]
  15. F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006). [CrossRef]
  16. Z. Ahmad, C. R. McClain, J. R. Herman, B. A. Franz, E. Kwiatkowska, W. D. Robinson, E. D. Bucsela, and M. Tzortziou, “Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements,” Appl. Opt. 46, 6504-6512 (2007). [CrossRef] [PubMed]
  17. M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.
  18. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophys. Laboratory, Hanscom Air Force Base, Massachusetts, 1979.
  19. A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005). [CrossRef]
  20. A. I. Lyapustin, “Radiative transfer code SHARM for atmospheric and terrestrial applications,” Appl. Opt. 44, 7764-7772 (2005). [CrossRef] [PubMed]
  21. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA Technical Publication 1998-206895, ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF.
  22. International Ocean Colour Coordinating Group, “Minimum requirements for an operational ocean-colour sensor for the open ocean,” Rep. 1 (International Ocean Colour Coordinating Group, 1998), p 46.
  23. L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.
  24. J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004). [CrossRef]
  25. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.
  26. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited