OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3860–3867

Ray-transfer-matrix model for accurate pulsed cavity ring-down measurement in the mismatching case

Yuan Gong and Bincheng Li  »View Author Affiliations

Applied Optics, Vol. 47, Issue 21, pp. 3860-3867 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model based on the ray-transfer matrix is developed for the pulsed cavity ring-down (CRD) technique to numerically investigate the influence of the geometric parameters of the pulsed-CRD arrangement on the CRD signal. By fitting the spatial distribution of the pulsed laser beam to that of the TEM 00 cavity mode, the geometric parameters are optimized to obtain perfect matching between the laser beam and the ring-down cavity. It is indicated by the numerical simulations that as long as the laser power exiting the ring-down cavity is fully collected, a single exponential-decay signal, identical to the perfectly-matched CRD signal, is obtained in the mismatching case to determine accurately the cavity decay time. Intensity fluctuations appear in the mismatched CRD signal if the laser power exiting the ring-down cavity is not fully collected. Both the conventional exponential decay fitting approach and a linear fitting procedure are employed to analyze these mismatched CRD signals and the latter is recommended to make an accurate pulsed-CRD measurement.

© 2008 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(140.4780) Lasers and laser optics : Optical resonators
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: February 27, 2008
Revised Manuscript: June 16, 2008
Manuscript Accepted: June 23, 2008
Published: July 16, 2008

Yuan Gong and Bincheng Li, "Ray-transfer-matrix model for accurate pulsed cavity ring-down measurement in the mismatching case," Appl. Opt. 47, 3860-3867 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  2. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Uenten, D. S. Urevig, D. J. Spencer, and D. J. Bernard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144-147 (1980). [CrossRef] [PubMed]
  3. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238-1245 (1984). [CrossRef] [PubMed]
  4. Y. Le Grand and A. Le Floch, “Sensitive dichroism measurement using eigenstate decay times,” Appl. Opt. 29, 1244-1248(1990). [CrossRef]
  5. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  6. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  7. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980-6990 (2002). [CrossRef] [PubMed]
  8. I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express 13, 2906-2915 (2005). [CrossRef] [PubMed]
  9. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  10. A. P. Yalin, V. Surla, M. Butweiller, and J. D. Williams, “Detection of sputtered metals with cavity ring-down spectroscopy,” Appl. Opt. 44, 6496-6505 (2005). [CrossRef] [PubMed]
  11. A. Schocker, K. K-Hoinghaus, and A. Brockhinke, “Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit,” Appl. Opt. 44, 6660-6672(2005). [CrossRef] [PubMed]
  12. R. D. van Zee, J. T. Hodges, and J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951-3960(1999). [CrossRef]
  13. H. Naus, I. H. M. van Stokkum, W. Hogervorst, and W. Ubachs, “Quantitative analysis of decay transients applied to multimode pulsed cavity ringdown experiment,” Appl. Opt. 40, 4416-4426 (2001). [CrossRef]
  14. D.-H. Lee, Y. Yoon, B. Kim, J. Y. Lee, Y. S. Yoo, and J. W. Hahn, “Optimization of the mode matching in pulsed cavity ringdown spectroscopy by monitoring non-degenerate transverse mode beating,” Appl. Phys. B 74, 435-440 (2002). [CrossRef]
  15. S. Spuler and M. Linne, “Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy,” Appl. Opt. 41, 2858-2868 (2002). [CrossRef] [PubMed]
  16. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355-364 (2006). [CrossRef]
  17. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance,” J. Opt. Soc. Am. B 23, 1938-1945 (2006). [CrossRef]
  18. B. A. Richman, A. A. Kachanov, and B. A. Paldus, “Novel detection of aerosols: combined cavity ring-down and fluorescence spectroscopy,” Opt. Express 13, 3376-3387 (2005). [CrossRef] [PubMed]
  19. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998). [CrossRef]
  20. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  21. Y. Gong and B. C. Li, “Effect of instrumental response time in exponential-decay based cavity ring-down techniques for high reflectivity measurement,” Proc. SPIE 6720, 67201E-1-67201E-8 (2007).
  22. A. A. Tovar and L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522-1533 (1995). [CrossRef]
  23. A. A. Tovar and L. W. Casperson, “Generalized beam matrices. II. Mode selection in lasers and periodic misaligned complex optical systems,” J. Opt. Soc. Am. A 13, 90-96 (1996). [CrossRef]
  24. R. Hauck, H. P. Kortz, and H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598-601 (1980). [CrossRef] [PubMed]
  25. J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited