OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3892–3900

Long-range surface plasmon polariton waveguides embedded in fluorinated polymer

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr.  »View Author Affiliations

Applied Optics, Vol. 47, Issue 21, pp. 3892-3900 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (7062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Low-attenuation waveguides based on the propagation of long-range surface plasmon polaritons (LRSPPs) along thin Au stripes embedded in low absorption perfluorocyclobutane (PFCB) polymer are presented. A new low in propagation loss of < 2.0 dB / cm was achieved for a 4 μm wide waveguide by optimizing the cladding material and fabrication process. The coupling efficiency between the LRSPP waveguide and the optical fiber is studied theoretically and experimentally for different widths of Au stripes and various cladding thicknesses. Lower coupling loss is found when the cladding thickness is close to the mode diameter of the butt-coupled fiber. Based on the 2D distribution of SPP modes calculated by a finite-difference mode solver, a symmetric structure of multilayer claddings with different refractive indices is proposed to optimize device insertion loss.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optical Devices

Original Manuscript: April 2, 2008
Manuscript Accepted: May 31, 2008
Published: July 17, 2008

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr., "Long-range surface plasmon polariton waveguides embedded in fluorinated polymer," Appl. Opt. 47, 3892-3900 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  2. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008). [CrossRef]
  5. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006). [CrossRef]
  6. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001). [CrossRef]
  7. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  8. P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105 (2007). [CrossRef]
  9. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971-1977 (2006). [CrossRef]
  10. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal of finite width,” Opt. Lett. 25, 844-846 (2000). [CrossRef]
  11. R. Charbonneau, C. Seales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477-494 (2006). [CrossRef]
  12. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233-1241 (2006). [CrossRef]
  13. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006). [CrossRef]
  14. J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007). [CrossRef]
  15. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  16. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005). [CrossRef]
  17. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006). [CrossRef]
  18. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  19. S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006). [CrossRef]
  20. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391-4402 (2006). [CrossRef]
  21. A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolaysen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005). [CrossRef] [PubMed]
  22. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polariton,” J. Lightwave Technol. 24, 912-918 (2006). [CrossRef]
  23. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-rangings surface plasmon polariton waveguides,” Opt. Express 13, 4674 (2005). [CrossRef] [PubMed]
  24. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. L. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  25. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007). [CrossRef]
  26. D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002). [CrossRef]
  27. J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006). [CrossRef]
  28. M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds., Handbook of Optics II (McGraw-Hill, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited