OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3932–3940

Determination of the correlation between physical measurements of roughness, optical properties, and perception of frosted glass surfaces

Jérôme Frayret, Olivier Eterradossi, Alain Castetbon, Martine Potin-Gautier, Gérard Trouvé, and Hugues de Roulhac  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3932-3940 (2008)
http://dx.doi.org/10.1364/AO.47.003932


View Full Text Article

Enhanced HTML    Acrobat PDF (4751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chemical frosting is used as a surface decorating method by many glass package producers. After immersion in an acid frosting bath, glass items present the desired frosted effect. The perception of this particular effect is due to the formation of a microscopic crystalline pattern on the glass surface, which scatters light passing through the glass surface. The chemical composition of the frosting bath influences these properties by modifying the surface roughness, the depth, and the average slopes of the crystalline pattern. Perception of the final aspect can be modified according to the chemical composition of the frosting bath. Different correlations between all these parameters exist and have been quantified.

© 2008 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(240.5770) Optics at surfaces : Roughness

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 22, 2008
Revised Manuscript: June 17, 2008
Manuscript Accepted: June 21, 2008
Published: July 17, 2008

Citation
Jérôme Frayret, Olivier Eterradossi, Alain Castetbon, Martine Potin-Gautier, Gérard Trouvé, and Hugues de Roulhac, "Determination of the correlation between physical measurements of roughness, optical properties, and perception of frosted glass surfaces," Appl. Opt. 47, 3932-3940 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Schicht, R. Leuteritz, M. Krueger, E. V. Sobolev, O. V. Shcheglova, N. E. Tikhomirova, and T. G. Chernyakova, “Mattierungspaste guer Glas [Frosting paste for glass],” EU patent DD153360 (6 January 1982).
  2. N. I. Min'ko, V. S. Bessmertnyi, V. A. Panasenko, S. V. Semenenko, S. N. Zubenko, and N. I. Voloshko, “Frosting as a contemporary method of glass decoration,” Glass Ceram. 60, 161-163 (2003). [CrossRef]
  3. N. A. Vereshchagina, M. Y. Gadalova, and A. M. Butaev, “Composition for frosting glass articles,” EU patent SU1404482 (23 June 1998).
  4. H. Zhang and X. Qi, “Frosting chemical for silicate glass,” EU patent CN1327958 (26 December 2001).
  5. Y. Bessoles, F. Guy, and G. Trouve, “Composition for roughening glass, etching bath, process for roughening glass and roughened objects,” EU patent EP1108773 (20 June 2001).
  6. J. Frayret, A. Castetbon, M. Potin-Gautier, C. Guimon, M. F. Guimon, Y. Bessoles, G. Trouve, and H. De Roulhac, “A study of the process conditions that lead to an unusual frosted glass,” in 7th ESG Conference on Glass Science and Technology (Glass Technology, 2004), pp. 103-108.
  7. St Gobain Desjonqueres, 80350 Mers les bains, France, www.sgdgroup.com.
  8. J. Frayret, “Preliminary research on the actual frosting glass processes,” internal SEPPIC proprietary report (2003).
  9. Y. Bessoles, F. Guy, and G. Trouve, “Composition for roughening glass, etching bath, process for roughening glass and roughened objects,” EU patent EP1108773 (20 June 2001).
  10. STIL, 595, rue Pierre Berthier, Domaine de Saint Hilaire, F-13855 Aix en Provence Cedex 3, France, contact@stilsa.com.
  11. DIGITALSURF, 16 rue Lavoisier, F-25000 Besançon, France, www.digitalsurf.fr.
  12. R Development Core Team, R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2008), www.R-project.org.
  13. Instrument Systems GmbH, Neumarkter Strasse 83, D-81673 Munich, Germany, info@instrumentsystems.de.
  14. R. A. Jones, “An automated technique for deriving MTF from edge traces,” Photograph. Sci. Eng. 7, 102-106 (1967).
  15. P. B. Greer and T. Van Doorn, “Evaluation of an algorithm for the assessment of the MTF using an edge method,” Med. Phys. 27, 2048-2059 (2000). [CrossRef] [PubMed]
  16. M. D'zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color transparency,” Perception 26, 471-492 (1997). [CrossRef] [PubMed]
  17. F. Metelli, “The perception of transparency,” Sci. Am. 230, 90-98 (1974). [CrossRef] [PubMed]
  18. L. Simonot, “Etude expérimentale et modélisation de la diffusion de la lumière dans une couche de peinture colorée et translucide. Application à l'effet visuel des glacis et des vernis,” These de Doctorate (Université Pierre et Marie Curie--Paris VI, 2002).
  19. E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. (Am. Soc. Mech. Eng.) 55, 568-572 (1933).
  20. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, NBS Monograph 160 (U.S. Department of Commerce, 1977).
  21. S.-M. F. Nee, R. V. Dewees, T.-W. Nee, L. F. Johnson, and M. Moran, “Slope distribution of a rough surface measured by transmission scattering and polarization,” Appl. Opt. 39, 1561-1569 (2000). [CrossRef]
  22. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relation between surface scattering and microtopographic features,” Opt. Eng. 18, 125-136 (1979).
  23. B. I. Raju, “Encoding and decoding of shape in tactile sensing,” M.S. thesis (Massachusetts Institute of Technology, 1998).
  24. J. Biggs and M. A. Srinivasan, “Tangential versus normal displacements of skin: relative effectiveness for producing tactile sensations,” in 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (IEEE Computer Society, 2002), pp. 121-128. [CrossRef]
  25. M. A. Srinivasan and R. H. Lamotte, “Tactual discrimination of softness,” J. Neurophysiol. 73, 88-101. [PubMed]
  26. S. Lederman, “Tactile roughness of grooved surface: the touching process and effect of macro- and microsurface structure,” Percept. Psychophys. 16, 385-395 (1974). [CrossRef]
  27. S. Guest and C. Spence, “What role does multisensory integration play in visiotactile perception of texture?” Int. J. Psychophysiol. 50, 63-80 (2003). [CrossRef] [PubMed]
  28. S. Guest and C. Spence, “Tactile dominance in speeded discrimination of textures,” Exp. Brain Res. 150, 201-207(2003). [PubMed]
  29. Y. Hatwell, “Neurophysiologie et psychologie cognitive du toucher,” in 4ème Rencontre Internationale Science-Industrie : Bio-sensoriel aujourd'hui et demain (Institut Français du Textile et de l'Habillement, 2000).
  30. S. J. Lederman and S. G. Abott, “Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics,” J. Exp. Psychol. Hum. Percept. Perform. 7, 902-915 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited