OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 22 — Aug. 1, 2008
  • pp: 3994–3998

Suppression of undesired diffraction orders of binary phase holograms

Christian Maurer, Andreas Schwaighofer, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations


Applied Optics, Vol. 47, Issue 22, pp. 3994-3998 (2008)
http://dx.doi.org/10.1364/AO.47.003994


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to remove undesired diffraction orders of computer-generated binary phase holograms is demonstrated. Normally, the reconstruction of binary Fourier holograms, made from just two phase levels, results in an undesired inverted image from the minus first diffraction order, which is superposed with the desired one. This can be avoided by reconstructing the hologram with a diffuse light field with a pseudorandom, but known, phase distribution, which is taken into account for the hologram computation. As a consequence, only the desired image is reconstructed, whereas all residual light is dispersed, propagating as a diffuse background wave. The method may be advantageous to employ ferroelectric spatial light modulators as holographic display devices, which can display only binary phase holograms, but which have the advantage of fast switching rates.

© 2008 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(230.6120) Optical devices : Spatial light modulators
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 7, 2008
Revised Manuscript: June 5, 2008
Manuscript Accepted: June 9, 2008
Published: July 22, 2008

Citation
Christian Maurer, Andreas Schwaighofer, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte, "Suppression of undesired diffraction orders of binary phase holograms," Appl. Opt. 47, 3994-3998 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-22-3994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  2. G. O. Reynolds, J. B. Develis, and B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE Press, 1989).
  3. T. H. Barnes, T. Eiju, K. Matsuda, H. Ichikawa, M. R. Taghizadeh, and J. Turunen, “Reconfigurable free-space optical interconnections with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 31, 5527-5535 (1992).
  4. J. Gourlay, S. Samus, P. McOwan, D. G. Vass, I. Underwood, and M. Worboys, “Real-time binary phase holograms on a reflective ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 8251-8254 (1994).
  5. W. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 17, 2053-2059 (2003).
  6. K. M. Johnson, M. A. Handschy, and L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385-391 (1987).
  7. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s, with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol. 24, 1989-1997 (2006). [CrossRef]
  8. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, “Time-multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications,” Opt. Express 14, 3065-3072 (2006). [CrossRef]
  9. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000). [CrossRef]
  10. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
  11. K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Phys. World 15, 31-35 (2002).
  12. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829-831 (2003). [CrossRef]
  13. G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007), doi: 10.1088/1367-2630/9/1/014. [CrossRef]
  14. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic hologram,” Opt. Express 11, 3562-3567 (2003).
  15. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243-2250 (2004).
  16. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef]
  17. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158-166 (2003).
  18. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  19. J. A. Davis, D. M. Cottrell, J. E. Davis, and R. A. Lilly, “Fresnel lens-encoded binary phase-only filters for optical pattern recognition,” Opt. Lett. 14, 659-661 (1989).
  20. M. A. A. Neil and E. G. S. Paige, “Breaking of inversion symmetry in 2-level binary, Fourier holograms,” in Fourth International Conference on Holographic Systems, Components and Applications (IEEE, 1993), pp. 85-90.
  21. V. Arrizón and M. Testorf, “Efficiency limit of spatially quantized Fourier array illuminators,” Opt. Lett. 15, 197-199(1997).
  22. The undistorted zero-order efficiency of a wave field transmitted through a phase mask is given by ?0=|(x2?x1)?1?x1x2T(x)dx|2, where T(x) is the complex transmission function. In the case of a random, uniformly distributed phase grating (in an interval between 0 and ?), this becomes ?0=|??1?0?exp?(i?)d?|2=0.405.
  23. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237-246 (1972).
  24. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16, 2597-2603 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited