OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 22 — Aug. 1, 2008
  • pp: 4094–4105

Simplified spectraphotometric method for the detection of red blood cell agglutination

Melur Ramasubramanian, Steven Anthony, and Jeremy Lambert  »View Author Affiliations

Applied Optics, Vol. 47, Issue 22, pp. 4094-4105 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (12080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Human error is the most significant factor attributed to incompatible blood transfusions. A spectrophotometric approach to blood typing has been developed by examining the spectral slopes of dilute red blood cell (RBC) suspensions in saline, in the presence and absence of various antibodies, offering a technique for the quantitative determination of agglutination intensity [ Transfusion 39, 1051, 1999]. We offer direct theoretical prediction of the observed change in slope in the 660 1000 nm range through the use of the T-matrix approach and Lorenz–Mie theory for light scattering by dilute RBC suspensions. Following a numerical simulation using the T-matrix code, we present a simplified sensing method for detecting agglutination. The sensor design has been prototyped, fully characterized, and evaluated through a complete set of tests with over 60 RBC samples and compared with the full spectrophotometric method. The LED and photodiode pairs are found to successfully reproduce the spectroscopic determination of red blood cell agglutination.

© 2008 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(000.2170) General : Equipment and techniques
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(290.4020) Scattering : Mie theory
(290.2558) Scattering : Forward scattering

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 17, 2007
Revised Manuscript: May 30, 2008
Manuscript Accepted: June 24, 2008
Published: July 28, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Melur Ramasubramanian, Steven Anthony, and Jeremy Lambert, "Simplified spectraphotometric method for the detection of red blood cell agglutination," Appl. Opt. 47, 4094-4105 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. V. Linden, K. Wagner, A. E. Voytovich, and J. Sheehan, “Transfusion errors in New York State: an analysis of 10 years' experience,” Transfusion 40, 1207-1213 (2000). [CrossRef] [PubMed]
  2. B. A. Myhre and D. McRuer, “Human error: a significant cause of transfusion mortality,” Transfusion 40, 879-885 (2000). [CrossRef] [PubMed]
  3. J. Murakami, “Present state of transfusion errors,” Rinsho byori 51(1), 43-49 (2003). [PubMed]
  4. K. Sazama, “Transfusion errors: scope of the problem, consequences, and solutions,” Curr. Hematol. Rep. 2(6), 518-521(2003). [PubMed]
  5. W. Dzik, “Emily Cooley Lecture 2002: transfusion safety in the hospital,” Transfusion 43, 1190-1199 (2003). [CrossRef] [PubMed]
  6. H. A. Oberman, “The present and future crossmatch,” Transfusion 32, 794-796(1992). [CrossRef] [PubMed]
  7. P. Ingrand, N. Surer-Pierres, D. Houssay, and L. R. Salmi, “Reliability of the pretransfusion bedside compatibility test: association with transfusion practice and training,” Transfusion 38, 1030-1036 (1998). [CrossRef] [PubMed]
  8. V. Migeot, I. Ingrand, R. L. Salmi, and P. Ingrand, “Reliability of bedside ABO testing before transfusion,” Transfusion 42, 1348-1355 (2002). [CrossRef] [PubMed]
  9. P. P. Dujardin, L. R. Salmi, and P. Ingrand, “Errors in interpreting the pretransfusion bedside compatibility test,” Vox sanguinis 78, 37-43 (2000). [CrossRef] [PubMed]
  10. S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39, 1051-1059 (1999). [CrossRef] [PubMed]
  11. S. Narayanan, L. Galloway, A. Nonoyama, G. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “UV-visible spectrophotometric approach to blood typing II: phenotyping of subtype A2 and weak D and whole blood analysis,” Transfusion 42, 619-626 (2002). [CrossRef] [PubMed]
  12. M. Prakash and C. K. Arara, Physiology of Blood (Anmol, 1998).
  13. E. D. Quinley, Immunohematology: Principles and Practice, 2nd ed. (Lippincott-Raven, 1998).
  14. “Rh blood group system,” from Encyclopædia Britannica Online: http://www.britannica.com/eb/article-9063395, in Encyclopædia Britannica, retrieved (2 October 2007).
  15. L. H. Garcia-Rubio, S. Narayanan, G. Leparc, R. Potter, and S. Orton, “Spectrophotometric method and apparatus for blood typing,” U.S. Patent 6,330,058 (11 December 2001).
  16. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  17. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  18. I. Turcu, “Effective phase function for light scattered by blood,” Appl. Opt. 45, 639-647 (2006). [CrossRef] [PubMed]
  19. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309-324(1998). [CrossRef]
  20. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, FORTRAN Code http://www.giss.nasa.gov/~crmim.
  21. J. M. Steinke and A. P. Shepherd. “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988). [CrossRef] [PubMed]
  22. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410-7418 (1998). [CrossRef]
  23. http://en.wikipedia.org/wiki/Spheroid.
  24. S. V. Tsinopoulos and D. Polyzos, “Scattering of He-Ne laser light by an average sized red blood cell,” Appl. Opt. 38, 5499-5510 (1999). [CrossRef]
  25. A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3, 364-372 (1998). [CrossRef]
  26. T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006). [CrossRef]
  27. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953-1961 (2004). [CrossRef]
  28. C. Burgess and T. Frost, Standards and Best Practice in Absorption Spectrometry (Blackwell Science, 1999).
  29. S. R. Anthony, “A simplified visible/near-infrared spectrophotometric approach to blood typing for automated transfusion safety,” M.S. thesis (North Carolina State University, 2005).
  30. J. A. Lambert, “A miniaturized device for blood typing using a simplified spectrophotometric approach,” M.S. thesis (North Carolina State University, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited