OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 22 — Aug. 1, 2008
  • pp: E1–E7

Efficient reconstruction of two-dimensional complex amplitudes utilizing the redundancy of the ambiguity function

Xiyuan Liu, Christian Hruscha, and Karl-Heinz Brenner  »View Author Affiliations


Applied Optics, Vol. 47, Issue 22, pp. E1-E7 (2008)
http://dx.doi.org/10.1364/AO.47.0000E1


View Full Text Article

Enhanced HTML    Acrobat PDF (2032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a previous paper [ Opt. Commun. 225, 19–30 (2003) ] we presented a method to reconstruct two- dimensional complex amplitudes by using the ambiguity function of one-dimensional intensity scans, obtained from two optical setups involving cylindrical lenses. We demonstrate that the internal redundancy of the ambiguity function can be utilized to improve the efficiency of this method even further. We show that the phase reconstruction errors can be minimized with an appropriate algorithm, and we present experimental data that illustrate the efficient reconstruction of a two-dimensional phase element.

© 2008 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Optics in Computing

History
Original Manuscript: December 12, 2007
Revised Manuscript: February 28, 2008
Manuscript Accepted: February 29, 2008
Published: April 4, 2008

Citation
Xiyuan Liu, Christian Hruscha, and Karl-Heinz Brenner, "Efficient reconstruction of two-dimensional complex amplitudes utilizing the redundancy of the ambiguity function," Appl. Opt. 47, E1-E7 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-22-E1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Foucault , “Memoire sur la construction des telescopes en verre argente,” Ann. Obs. Imp. Paris 5, 197-237 (1859). [CrossRef]
  2. R. V. Shack and B. C. Platt , “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  3. M. R. Teague , “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. A 73, 1434-1441 (1983).
  4. N. Streibl , “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6-10 (1984). [CrossRef]
  5. J. Ragazzoni , “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43, 289-293 (1996). [CrossRef]
  6. R. W. Gerchberg and W. O. Saxton , “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972). [CrossRef]
  7. Z. Zalevsky , D. Mendlovic , and R. G. Dorsch , “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842-844 (1996).
  8. J. R. Fienup , “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  9. J. R. Fienup , “Space object imaging through the turbulent atmosphere,” Opt. Eng. 18, 529-534 (1979). [CrossRef] [PubMed]
  10. J. R. Fienup , “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. 19, 297-305 (1980).
  11. G. Pedrini , W. Osten , and Y. Zhang , “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833-835 (2005).
  12. P. Almoro , G. Pedrini , and W. Osten , “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596-8605 (2006). [CrossRef] [PubMed]
  13. A. W. Lohmann , “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181-2186 (1993). [CrossRef] [PubMed]
  14. M. G. Raymer , M. Beck , and D. F. McAllister , “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137-1140 (1994). [CrossRef]
  15. D. F. McAlister , M. Beck , L. Clarke , A. Mayer , and M. G. Raymer , “Optical phase retrieval by phase-space tomography and fractional-order Fourier transformation,” Opt. Lett. 20, 1181-1183 (1995). [CrossRef] [PubMed]
  16. J. Tu and S. Tamura , “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946-1949 (1997). [CrossRef] [PubMed]
  17. J. Tu and S. Tamura , “New technique for reconstruction of a complex wave field by means of measurement of three-dimensional intensity,” Proc. SPIE 3170, 108-115 (1997). [CrossRef]
  18. D. Dragoman , M. Dragoman , and K.-H. Brenner , “Amplitude and phase recovery of rotationally symmetric beams,” Appl. Opt. 41, 5512-5518 (2002). [CrossRef]
  19. D. Dragoman , M. Dragoman , and K.-H. Brenner , “Tomographic amplitude and phase recovery of vertical-cavity surface-emitting lasers by use of the ambiguity function,” Opt. Lett. 27, 1519-1521 (2002). [CrossRef] [PubMed]
  20. X. Liu and K.-H. Brenner , “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19-30 (2003). [CrossRef]
  21. D. Dragoman , “Redundancy of phase-space distribution functions in complex field recovery problems,” Appl. Opt. 42, 1932-1937 (2003). [CrossRef] [PubMed]
  22. D. Dragoman , “Reply to comment on 'redundancy of phase-space distribution functions in complex field recovery problems',” Appl. Opt. 44, 58-59 (2005).
  23. M. Testorf , “Comment on 'redundancy of phase-space distribution functions in complex field recovery problems',” Appl. Opt. 44, 55-57 (2005). [PubMed]
  24. A. Semichaevsky and M. Testorf , “Phase-space interpretation of deterministic phase retrieval,” J. Opt. Soc. Am. A 21, 2173-2179 (2004). [CrossRef]
  25. K.-H. Brenner , “Method for designing arbitrary two-dimensional continuous phase elements,” Opt. Lett. 25, 31-33(2000). [CrossRef]
  26. G. H. Golub and C. van Loan , Matrix Computations, 3rd ed. (Johns Hopkins U. Press, 1996).
  27. C. W. Groetsch , Inverse Problems in the Mathematical Sciences (Vieweg, 1993).
  28. W. H. Press , S. A. Teukolsky , W. T. Vetterling , and B. P. Flannery , Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited