OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 23 — Aug. 10, 2008
  • pp: 4255–4261

Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber

Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff  »View Author Affiliations


Applied Optics, Vol. 47, Issue 23, pp. 4255-4261 (2008)
http://dx.doi.org/10.1364/AO.47.004255


View Full Text Article

Enhanced HTML    Acrobat PDF (1529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spontaneous gas-phase Raman scattering using a hollow-core photonic bandgap fiber (HC-PBF) for both the gas cell and the Stokes light collector is reported. It was predicted that the HC-PBF configuration would yield several hundred times signal enhancement in Stokes power over a traditional free-space configuration because of increased interaction lengths and large collection angles. Predictions were verified by using nitrogen Stokes signals. The utility of this system was demonstrated by measuring the Raman signals as functions of concentration for major species in natural gas. This allowed photomultiplier-based measurements of natural gas species in relatively short integration times, measurements that were previously difficult with other systems.

© 2008 Optical Society of America

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 2, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 11, 2008
Published: August 6, 2008

Citation
Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff, "Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber," Appl. Opt. 47, 4255-4261 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-23-4255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  2. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley-Interscience, 1977).
  3. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  4. P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(5), 11-15 (October 2007).
  5. A. M. Zheltikov, “Ultrashort light pulses in hollow waveguides,” Phys. Usp. 45, 687-718 (2002). [CrossRef]
  6. S. Sensarn, S. N. Goda, G. Y. Yin, and S. E. Harris, “Molecular modulation in a hollow fiber,” Opt. Lett. 31, 2836-2838 (2006). [CrossRef] [PubMed]
  7. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996). [CrossRef]
  8. R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977). [CrossRef]
  9. A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006). [CrossRef]
  10. S. M. Howdle, K. Stanley, V. K. Popov, and V. N. Bagratashvili, “Can high-pressure Raman spectroscopy be simplified? A microscale optical-fiber capillary cell for the study of supercritical fluids,” Appl. Spectrosc. , 48, 214-218 (1994). [CrossRef]
  11. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049-2053 (2005). [CrossRef]
  12. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004). [CrossRef]
  13. S. D. Schwab and R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. , 41, 126-130, (1987). [CrossRef]
  14. M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998). [CrossRef]
  15. R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000). [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).
  17. C. C. Gregory, “Attenuation, modal, and polarization properties of n<1, hollow dielectric waveguides,” Appl. Opt. 32, 5302-5309 (1993). [CrossRef] [PubMed]
  18. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  19. P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003). [CrossRef] [PubMed]
  20. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005). [CrossRef] [PubMed]
  21. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  22. P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News , 18(7), 26-31 (July/August 2007).
  23. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002). [CrossRef] [PubMed]
  24. S.-G. Li, S.-Y. Liu, Z.-Y. Song, Y. Han, T.-L. Cheng, G.-Y. Zhou, and L.-T. Hou, “Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers,” Appl. Opt. 46, 5183-5188 (2007). [CrossRef] [PubMed]
  25. W. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross section of some simple gases,” J. Opt. Soc. Am. 63, 73-77 (1973). [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  27. HC-580 HC-PBF datasheet, retrieved 1 June 2007 from http://www.crystal-fibre.com/datasheets/HC-580-01.pdf.
  28. M. M. Carrabba, K. M. Spencer, C. Rich, and D. Rauh, “The utilization of a holographic Bragg diffraction filter for Rayleigh line rejection in Raman spectroscopy,” Appl. Spectrosc. 44, 1558-1561 (1990). [CrossRef]
  29. “RazorEdge long wave pass Raman filter,” http://www.semrock.com/Catalog/RamanEdgeFilter_spectra.htm
  30. J. B. Evett and C. Liu, Fundamentals of Fluid Mechanics (McGraw-Hill, 1987).
  31. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790-2797(2008). [CrossRef] [PubMed]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  33. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911-1913(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited