OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 23 — Aug. 10, 2008
  • pp: 4280–4286

Generalized rectangular finite difference beam propagation method

Slawomir Sujecki  »View Author Affiliations

Applied Optics, Vol. 47, Issue 23, pp. 4280-4286 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (6634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is proposed that allows for significant improvement of the numerical efficiency of the standard finite difference beam propagation algorithm. The advantages of the proposed method derive from the fact that it allows for an arbitrary selection of the preferred direction of propagation. It is demonstrated that such flexibility is particularly useful when studying the properties of obliquely propagating optical beams. The results obtained show that the proposed method achieves the same level of accuracy as the standard finite difference beam propagation method but with lower order Padé approximations and a coarser finite difference mesh.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves

ToC Category:
Integrated Optics

Original Manuscript: April 28, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: July 24, 2008
Published: August 8, 2008

Slawomir Sujecki, "Generalized rectangular finite difference beam propagation method," Appl. Opt. 47, 4280-4286 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990). [CrossRef]
  2. G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426-1428 (1992). [CrossRef] [PubMed]
  3. T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).
  4. C. Vassallo, “Limitations of the wide angle beam propagation method in nonuniform systems,” J. Opt. Soc. Am. A 13, 761-770 (1996). [CrossRef]
  5. D. Yevick, “The application of complex Padé approximants to vector field propagation,” IEEE Photon. Technol. Lett. 12, 1636-1638 (2000). [CrossRef]
  6. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743-1745 (1992). [CrossRef] [PubMed]
  7. H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992). [CrossRef]
  8. D. Yevick, “Physics and simulation of optoelectronic devices,” Proc. SPIE 1679, 37-45 (1992). [CrossRef]
  9. I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996). [CrossRef]
  10. C. Vassallo, “Interest of improved three-point formulas for finite-difference modelling of optical devices,” J. Opt. Soc. Am. A 14, 3273-3284 (1997). [CrossRef]
  11. D. Yevick and B. Hermansson, “Convergence properties of wide-angle techniques,” IEEE Photon. Technol. Lett. 6, 1457-1459 (1994). [CrossRef]
  12. G. R. Hadley, “Low truncation error finite difference equations for photonics simulation I: beam propagation,” J. Lightwave Technol. 16, 134-141 (1998). [CrossRef]
  13. J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997). [CrossRef]
  14. M. Koshiba and Y. Tsuji, “A wide-angle finite-element beam propagation method,” IEEE Photon. Technol. Lett. 8, 1208-1210 (1996). [CrossRef]
  15. C. C. Huang and C. C. Huang, “A novel wide-angle beam propagation method based on the spectral collocation scheme for computing tilted waveguides,” IEEE Photon. Technol. Lett. 17, 1872-1874 (2005). [CrossRef]
  16. I. Deshmukh and Q. H. Liu, “Pseudospectral beam-propagation method for optical waveguides,” IEEE Photonics Technol. Lett. 15, 60-62 (2003). [CrossRef]
  17. S. F. Helfert and R. Pregla, “Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures,” J. Lightwave Technol. 14, 2414-2421 (1996).
  18. D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” J. Lightwave Technol. 22, 2333-2340 (2004). [CrossRef]
  19. S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999). [CrossRef]
  20. T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999). [CrossRef]
  21. G. R. Hadley, “Slanted-wall beam propagation,” J. Lightwave Technol. 25, 2367-2375 (2007). [CrossRef]
  22. J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).
  23. P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996). [CrossRef]
  24. P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997). [CrossRef]
  25. S. Sujecki, “Wide-angle, finite difference beam propagation in oblique coordinate system,” J. Opt. Soc. Am. A 25, 138-145(2008). [CrossRef]
  26. P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999). [CrossRef]
  27. S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited