OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 24 — Aug. 20, 2008
  • pp: 4336–4344

Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique

Stephane Schilt, Renaud Matthey, Daniela Kauffmann-Werner, Christoph Affolderbach, Gaetano Mileti, and Luc Thévenaz  »View Author Affiliations

Applied Optics, Vol. 47, Issue 24, pp. 4336-4344 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple, easy-to-implement, and robust technique is reported to offset lock two semiconductor lasers with a frequency difference easily adjustable up to a couple of tens of gigahertz (10 and 19 GHz experimentally demonstrated). The proposed scheme essentially makes use of low-frequency control electronics and may be implemented with any type of single mode semiconductor laser, without any requirement for the laser linewidth. The technique is shown to be very similar to the wavelength modulation spectroscopy method commonly used for laser stabilization onto molecular absorption lines, as demonstrated by experimental results obtained using 935 nm laser diodes.

© 2008 Optical Society of America

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3425) Lasers and laser optics : Laser stabilization
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 8, 2008
Published: August 15, 2008

Stephane Schilt, Renaud Matthey, Daniela Kauffmann-Werner, Christoph Affolderbach, Gaetano Mileti, and Luc Thévenaz, "Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique," Appl. Opt. 47, 4336-4344 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, and T. Ogawa, “Frequency stabilization of GaAlAs laser using a Doppler-free spectrum of the Cs-D2 line,” IEEE J. Quantum Electron. QE-19, 169-175 (1983).
  2. F. Bertinetto, P. Gambini, M. Puleo, and E. Vezzoni, “Performance and limitations of laser diodes stabilized to the sides of molecular absorption lines of ammonia,” Rev. Sci. Instrum. 64, 2128-2132 (1993). [CrossRef]
  3. C. M. Fitzgerald, G. J. Koch, A. M. Bullock, and A. N. Dharamsi, “Wavelength modulation spectroscopy of water vapor and line center stabilization at 1.462 μm for lidar applications,” Proc. SPIE 3945, 98-105 (2000).
  4. G. J. Koch, “Automatic laser frequency locking to gas absorption lines,” Opt. Eng. 42, 1690-1693 (2003).
  5. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165-172 (2002).
  6. H.-M. Fang, S.-C. Wang, and J.-T. Shy, “Frequency stabilization of an external cavity diode laser to molecular iodine at 657.483 nm,” Appl. Opt. 45, 3173-3176 (2006).
  7. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294-6302 (1994).
  8. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728-6738 (2003). [CrossRef]
  9. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti , “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B. 85, 477-485 (2006).
  10. G. Santarelli, A. Clairo, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Opt. Commun. 104, 339-344 (1994).
  11. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-lock loop for generation of 3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936-938(1992).
  12. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” Appl. Phys. B. 79, 363-365 (2004).
  13. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta B 56, 1277-1354 (2001).
  14. C. Affolderbach and G. Mileti, “A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation,” Rev. Sci. Instrum. 76, 073108 (2005). [CrossRef]
  15. S. Schilt and L. Thévenaz, “Experimental method based on wavelength-modulation spectroscopy for the characterization of semiconductor lasers under direct modulation,” Appl. Opt. 43, 4446-4453 (2004). [CrossRef]
  16. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718-731 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited