OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 25 — Sep. 1, 2008
  • pp: 4448–4456

Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory

Elena Fernández, Manuel Ortuño, Sergi Gallego, Andrés Márquez, Celia García, Augusto Beléndez, and Inmaculada Pascual  »View Author Affiliations


Applied Optics, Vol. 47, Issue 25, pp. 4448-4456 (2008)
http://dx.doi.org/10.1364/AO.47.004448


View Full Text Article

Enhanced HTML    Acrobat PDF (18209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic data pages were multiplexed in different thickness layers of a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymers, which are considered interesting materials for recording holographic memories. A liquid crystal device was used to modify the object beam and store the data pages. A peristrophic multiplexing method is used to store a large number of data pages in the same spot in the material. The bit error rate was calculated fitting the histograms of the images to determine what parameters improve the quality of the images.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2870) Holography : Holographic display
(090.2900) Holography : Optical storage materials
(100.2960) Image processing : Image analysis
(210.0210) Optical data storage : Optical data storage
(210.4810) Optical data storage : Optical storage-recording materials

ToC Category:
Holography

History
Original Manuscript: March 20, 2008
Manuscript Accepted: July 12, 2008
Published: August 21, 2008

Citation
Elena Fernández, Manuel Ortuño, Sergi Gallego, Andrés Márquez, Celia García, Augusto Beléndez, and Inmaculada Pascual, "Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory," Appl. Opt. 47, 4448-4456 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-25-4448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996). [CrossRef] [PubMed]
  2. M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003). [CrossRef]
  3. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  4. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004). [CrossRef] [PubMed]
  5. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006). [CrossRef] [PubMed]
  6. R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007). [CrossRef]
  7. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003). [CrossRef]
  8. W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003). [CrossRef]
  9. O. Graydon, “Holographic storage turns blue,” Opt. Laser Europe 125, 7 (2005).
  10. S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005). [CrossRef]
  11. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005). [CrossRef] [PubMed]
  12. E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006). [CrossRef] [PubMed]
  13. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007). [CrossRef] [PubMed]
  14. K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003). [CrossRef]
  15. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003). [CrossRef]
  16. M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006). [CrossRef]
  17. K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990). [CrossRef]
  18. M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995). [CrossRef]
  19. A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001). [CrossRef]
  20. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000). [CrossRef]
  21. H. Kim and Y. H. Lee, “Unique measurement of the parameters of a twisted-nematic liquid-crystal display,” Appl. Opt. 44, 1642-1649 (2005). [CrossRef] [PubMed]
  22. V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005). [CrossRef]
  23. J. Jang and D. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001). [CrossRef]
  24. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006). [CrossRef]
  25. E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).
  26. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  27. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710-1712 (1998). [CrossRef]
  28. M. Keskinoz and B. V. K. Vijaya Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” Appl. Opt. 38, 4387-4393 (1999). [CrossRef]
  29. P. Varhegyi, P. Koppa, F. Ujhelyi, and Lorincz, “System modeling and optimization of Fourier holographic memory,” Appl. Opt. 44, 3024-3031 (2005). [CrossRef] [PubMed]
  30. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited