OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 25 — Sep. 1, 2008
  • pp: 4560–4568

Spectral background and transmission characteristics of fiber optic imaging bundles

Joshua Anthony Udovich, Nathaniel D. Kirkpatrick, Angelique Kano, Anthony Tanbakuchi, Urs Utzinger, and Arthur F. Gmitro  »View Author Affiliations


Applied Optics, Vol. 47, Issue 25, pp. 4560-4568 (2008)
http://dx.doi.org/10.1364/AO.47.004560


View Full Text Article

Enhanced HTML    Acrobat PDF (5763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The emission and transmission properties of three commercially produced coherent fiber optic imaging bundles were evaluated. Full fluorescence excitation versus emission data were collected from 250 to 650 nm excitation for high-resolution Sumitomo, Fujikura, and Schott fiber bundles. The results generated show regions of autofluorescence and inelastic Raman scattering in the imaging bundles that represent a wavelength-dependent background signal when these fibers are used for imaging applications. The high-resolution fiber bundles also exhibit significant variation in transmission with the angle of illumination, which affects the overall coupling and transmission efficiency. Knowledge of these properties allows users of high-resolution imaging bundles to optimally design systems that utilize such bundles.

© 2008 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2350) Fiber optics and optical communications : Fiber optics imaging

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 4, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: July 30, 2008
Published: August 28, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Joshua Anthony Udovich, Nathaniel D. Kirkpatrick, Angelique Kano, Anthony Tanbakuchi, Urs Utzinger, and Arthur F. Gmitro, "Spectral background and transmission characteristics of fiber optic imaging bundles," Appl. Opt. 47, 4560-4568 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-25-4560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Kino, T. D. Wang, C. H. Contag, M. Mandella, and N. Y. Chan, “Performance of dual axes confocal microscope for in vivo molecular and cellular imaging,” Proc. SPIE 5324, 35-46 (2004).
  2. K. Carlson, M. Chidley, S. Kung Bin, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44, 1792-1797 (2005). [CrossRef]
  3. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004). [CrossRef]
  4. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43, 5763-5771 (2004). [CrossRef]
  5. L. Yang, A. M. Raighne, E. M. McCabe, L. A. Dunbar, and T. Scharf, “Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle,” Appl. Opt. 44, 5928-5936 (2005). [CrossRef]
  6. T. P. Moffitt and S. A. Prahl, “In vivo sized-fiber spectroscopy,” Proc. SPIE 3917, 225-231 (2000).
  7. R.-D. Sun, A. Nakajima, I. Watanabe, T. Watanabe, and K. Hashimoto, “TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds,” J. Photochem. Photobiol., A 136, 111-116 (2000).
  8. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15, 2151-2165 (2007). [CrossRef]
  9. M. A. Player, “Spread functions and modulation transfer functions of fibre-optic bundles,” J. Mod. Opt. 35, 1363-1372 (1988). [CrossRef]
  10. C. Ramiro, C. Olivier, D. D. Christian, T. Fatemeh, and S. Rene-Paul, “Measurements of the point spread function for multicore fibers used as image guides in microendoscopy,” Opt. Eng. 34, 2092-2102 (1995).
  11. A. Komiyama and M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107, 49-53 (1994). [CrossRef]
  12. R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182, 1135-1139 (2000).
  13. M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single mode fibers,” J. Lightwave Technol. 10, 539-543 (1992). [CrossRef]
  14. M. Mogi and K. Yoshimura, “Development of super high density packed image guide,” Proc. SPIE 1067, 172-181 (1989).
  15. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276-278 (1973). [CrossRef]
  16. N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, “Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring,” Photochem. Photobiol. 81, 125-134 (2005). [CrossRef]
  17. N. D. Kirkpatrick, J. B. Hoying, S. K. Botting, J. A. Weiss, and U. Utzinger, “In vitro model for endogenous optical signatures of collagen,” J Biomed. Opt. 11, 054021 (2006). [CrossRef]
  18. H. M. Presby, “Ultraviolet-excited fluorescence in optical fibers and preforms,” Appl. Opt. 20, 701-706 (1981).
  19. M. J. Yuen, “Ultraviolet absorption studies of germanium silicate glasses,” Appl. Opt. 21, 136-140 (1982).
  20. J. F. Scott, “Raman Spectra of GeO2,” Phys. Rev. B 1, 3488-3493 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited