OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 25 — Sep. 1, 2008
  • pp: 4569–4573

In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography

Gabe M. Guss, Isaac L. Bass, Richard P. Hackel, Christian Mailhiot, and Stavros G. Demos  »View Author Affiliations


Applied Optics, Vol. 47, Issue 25, pp. 4569-4573 (2008)
http://dx.doi.org/10.1364/AO.47.004569


View Full Text Article

Enhanced HTML    Acrobat PDF (6760 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during postprocessing via CO 2 laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working-distance geometry was employed to allow imaging through the opposite surface of the 5 cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

© 2008 Optical Society of America

OCIS Codes
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(140.3380) Lasers and laser optics : Laser materials
(180.1655) Microscopy : Coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: April 8, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: July 24, 2008
Published: August 28, 2008

Citation
Gabe M. Guss, Isaac L. Bass, Richard P. Hackel, Christian Mailhiot, and Stavros G. Demos, "In situ monitoring of surface postprocessing in large-aperture fused silica optics with optical coherence tomography," Appl. Opt. 47, 4569-4573 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-25-4569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Burnham, L. A. Hackel, P. J. Wegner, T. G. Parham, L. W. Hrubesh, B. M. Penetrante, P. K. Whitman, S. G. Demos, J. A. Menapace, M. J. Runkel, M. J. Fluss, M. D. Feit, M. H. Key, and T. A. Biesiada, “Improving 351 nm damage performance of large aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173-185 (2002). [CrossRef]
  2. S. G. Demos, M. Staggs, M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628-3633 (2002). [CrossRef] [PubMed]
  3. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength radiation,” Proc. SPIE 5991, 599108 (2005). [CrossRef]
  4. L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. Carr, R. Hill, L. J. Summers, M. D. Feit, A. M. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth in NIF final optics,” Proc. SPIE 4679, 23-33 (2002). [CrossRef]
  5. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005). [CrossRef]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  7. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444-1450 (2002). [PubMed]
  8. M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si2N4 balls using optical coherence tomography,” NDT&E Int. 34, 547-555 (2001). [CrossRef]
  9. M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Levesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low-coherence interferometry,” Proc. SPIE 6343, 63431Z (2006). [CrossRef]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  12. Y. Yasuno, V. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  13. C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101, 7516-7521 (2004). [CrossRef] [PubMed]
  14. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107-114 (2004).
  15. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337-357 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited