OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 25 — Sep. 1, 2008
  • pp: 4649–4671

Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. 2: Validation using Fourier transform spectrometers

Nicholas R. Nalli, Peter J. Minnett, Eric Maddy, W. Wallace McMillan, and Mitchell D. Goldberg  »View Author Affiliations


Applied Optics, Vol. 47, Issue 25, pp. 4649-4671 (2008)
http://dx.doi.org/10.1364/AO.47.004649


View Full Text Article

Enhanced HTML    Acrobat PDF (14417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface-leaving radiance model developed in Part I [Appl. Opt. 47, 3701 (2008)] is validated against an exhaustive set of Fourier transform spectrometer field observations acquired at sea. Unlike prior limited studies, these data include varying all-sky atmospheric conditions (clear, cloudy, and dusty), with regional samples from the tropics, mid-latitudes, and high latitudes. Our analyses show the model to have reduced bias over standard models at emission angles 45 ° .

© 2008 Optical Society of America

OCIS Codes
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(280.6780) Remote sensing and sensors : Temperature
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 29, 2007
Revised Manuscript: April 23, 2008
Manuscript Accepted: May 26, 2008
Published: August 29, 2008

Citation
Nicholas R. Nalli, Peter J. Minnett, Eric Maddy, W. Wallace McMillan, and Mitchell D. Goldberg, "Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. 2: Validation using Fourier transform spectrometers," Appl. Opt. 47, 4649-4671 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-25-4649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996). [CrossRef]
  2. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Tech. 18, 994-1013 (2001). [CrossRef]
  3. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988). [CrossRef]
  4. P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Tech. 13, 126-141 (1996). [CrossRef]
  5. J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005). [CrossRef] [PubMed]
  6. N. R. Nalli, P. J. Minnett, and P. van Delst, “Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations,” Appl. Opt. 47, 3701-3721 (2008).
  7. K. Yoshimori, K. Itoh, and Y. Ichioka, “Thermal radiative and reflective characteristics of a wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886 (1994). [CrossRef]
  8. K. Yoshimori, K. Itoh, and Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236-6247 (1995). [CrossRef] [PubMed]
  9. X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 ?m: modeling and validation,” Appl. Opt. 36, 1-11 (1997).
  10. D. E. Freund, R. I. Joseph, D. J. Donohue, and K. T. Constantikes, “Numerical computations of rough sea surface emissivity using the interaction probability density,” J. Opt. Soc. Am. A 14, 1836-1849 (1997). [CrossRef]
  11. J. A. Shaw and C. Marston, “Polarized infrared emissivity for a rough water surface,” Opt. Express 7, 375-380 (2000). [CrossRef] [PubMed]
  12. N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001). [CrossRef]
  13. B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Remote Sens. Environ. 88, 453-467 (2003). [CrossRef]
  14. C. Bourlier, “Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics,” App. Opt. 44, 4335-4349 (2005). [CrossRef]
  15. C. Bourlier, “Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band,” Appl. Opt. 45, 6241-6254 (2006). [PubMed]
  16. K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006). [CrossRef]
  17. K. Caillault, S. Fauqueux, C. Bourlier, P. Simoneau, and L. Labarre, “Multiresolution optical characteristics of rough sea surface in the infrared,” Appl. Opt. 46, 5471-5481 (2007). [CrossRef] [PubMed]
  18. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Stromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27, 3210-3218 (1988). [CrossRef] [PubMed]
  19. M. J. Post, C. W. Fairall, J. B. Snider, Y. Han, A. B. White, W. L. Ecklund, K. M. Weickmann, P. K. Quinn, D. I. Cooper, S. M. Sekelsky, R. E. McIntosh, P. Minnett, and R. O. Knuteson, “The Combined Sensor Program: an air-sea science mission in the central and western Pacific Ocean,” Bull. Am. Meteorol. Soc. 78 (12), 2797-2815 (1997). [CrossRef]
  20. J. H. Seinfeld, G. R. Carmichael, R. Arimoto, W. C. Conant, F. J. Brechtel, T. S. Bates, T. A. Cahill, A. D. Clarke, S. J. Doherty, P. J. Flatau, J. K. B. J. Huebert, K. M. Markowicz, P. K. Quinn, L. M. Russell, P. B. Russell, A. Shimizu, Y. Shinozuka, C. H. Song, Y. Tang, I. Uno, A. M. Vogelmann, R. J. Weber, J.-H. Woo, and X. Y. Zhang, “ACE-ASIA: regional climatic and atmospheric chemical effects of asian dust and pollution,” Bull. Am. Meteorol. Soc. 85, 367-380 (2004). [CrossRef]
  21. N. R. Nalli, P. Clemente-Colón, P. J. Minnett, M. Szczodrak, V. Morris, E. Joseph, M. D. Goldberg, C. Barnet, W. W. Wolf, A. Jessup, R. Branch, R. O. Knuteson, and W. F. Feltz, “Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004,” J. Geophys. Res. 111, D09S04 (2006). [CrossRef]
  22. V. Morris, P. Clemente-Colón, N. R. Nalli, E. Joseph, R. A. Armstrong, Y. Detrés, M. D. Goldberg, P. J. Minnett, and R. Lumpkin, “Measuring trans-Atlantic aerosol transport from Africa,” EOS Trans. Am. Geophys. Union 87, 565-571(2006). [CrossRef]
  23. M. Harvey, C. S. Law, M. Smith, J. A. Hall, E. Abraham, C. Stevens, M. Hadfield, D. Ho, B. Ward, S. D. Archer, J. Cainey, K. Currie, M. Ellwood, P. Hill, G. Jones, J. Kuparinen, B. Macaskill, W. Main, A. Marriner, J. McGregor, C. McNeil, P. J. Minnett, S. Nodder, J. Peloquin, S. Pickmere, M. Pinkerton, K. Safi, R. Thompson, M. Walkington, S. Wright, and L. Ziolkowski, “The SOLAS Air-Sea Gas Exchange Experiment (SAGE) 2004,” submitted to Deep-Sea Res. Part II.
  24. W. W. McMillan, R. Hoff, L. Strow, J. Comer, K. Lightner, E. Maddy, K. McCann, M. McCourt, and K. Rutledge, “ABOVE: The BBAERI AIRS Ocean Validation Experiment,” in Optical Remote Sensing, OSA Technical Digest (Optical Society of America, 2003), paper OTuA2, pp. 46-48.
  25. C. K. Rutledge, G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, Jr., B. E. Fabbri, J. J. Madigan, Jr., and R. J. Knapp, “Offshore radiation observations for climate research at the CERES Ocean Validation Experiment: a new 'laboratory' for retrieval algorithm testing,” Bull. Am. Meteorol. Soc. 87, 1211-1222 (2006). [CrossRef]
  26. C. C. Borel, “ARTEMISS-an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data,” unclassified report LA-UR-027907 (Los Alamos National Laboratory, 2003), presented at 28th Annual GOMACTech Conference, 31 March 31 2003 to 3 April 2003, Hyperspectral Imaging Session.
  27. L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).
  28. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-?m wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  29. H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975). [CrossRef]
  30. D. J. Segelstein, “The complex refractive index of water,” Master's thesis (University of Missouri-Kansas City, 1981).
  31. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714-1719 (1989). [CrossRef] [PubMed]
  32. J. E. Bertie and Z. Lan, “Infrared intensities of liquids. XX. The intensity of the OH stretching band of liquid water revisited and the best current values of the optical constants of H2O (l) at 25C between 15,000 and 1 cm?1,” Appl. Spectrosc. 50, 1047-1057 (1996). [CrossRef]
  33. D. Friedman, “Infrared characteristics of ocean water (1.5-15 ?m),” Appl. Opt. 8, 2073-2078 (1969). [CrossRef] [PubMed]
  34. C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63-78 (1955).
  35. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun's glitter,” J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  36. N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486 (2002). [CrossRef]
  37. S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005). [CrossRef]
  38. C. J. Merchant, A. R. Harris, M. J. Murray, and A. M. Závody, “Toward the elimination of bias in satellite retrievals of sea surface temperature, 1, Theory, modeling and interalgorithm comparison,” J. Geophys. Res. 104, 23565-23578 (1999). [CrossRef]
  39. A. Ignatov, J. Sapper, I. Laszlo, N. R. Nalli, and K. B. Kidwell, “Operational aerosol observations (AEROBS) from AVHRR/3 onboard NOAA-KLM satellites,” J. Atmos. Ocean. Tech. 21, 3-26 (2004). [CrossRef]
  40. S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited