OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 26 — Sep. 10, 2008
  • pp: 4672–4683

Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames

Waruna D. Kulatilaka, Brian D. Patterson, Jonathan H. Frank, and Thomas B. Settersten  »View Author Affiliations


Applied Optics, Vol. 47, Issue 26, pp. 4672-4683 (2008)
http://dx.doi.org/10.1364/AO.47.004672


View Full Text Article

Enhanced HTML    Acrobat PDF (3388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon laser-induced fluorescence (TP-LIF) line imaging of atomic hydrogen was investigated in a series of premixed CH 4 / O 2 / N 2 , H 2 / O 2 , and H 2 / O 2 / N 2 flames using excitation with either picosecond or nanosecond pulsed lasers operating at 205 nm . Radial TP-LIF profiles were measured for a range of pulse fluences to determine the maximum interference-free signal levels and the corresponding picosecond and nanosecond laser fluences in each of 12 flames. For an interference-free measurement, the shape of the TP-LIF profile is independent of laser fluence. For larger fluences, distortions in the profile are attributed to photodissociation of H 2 O , CH 3 , and/or other combustion intermediates, and stimulated emission. In comparison with the nanosecond laser, excitation with the picosecond laser can effectively reduce the photolytic interference and produces approximately an order of magnitude larger interference-free signal in CH 4 / O 2 / N 2 flames with equivalence ratios in the range of 0.5 Φ 1.4 , and in H 2 / O 2 flames with 0.3 Φ 1.2 . Although photolytic interference limits the nanosecond laser fluence in all flames, stimulated emission, occurring between the laser-excited level, H ( n = 3 ) , and H ( n = 2 ) , is the limiting factor for picosecond excitation in the flames with the highest H atom concentration. Nanosecond excitation is advantageous in the richest ( Φ = 1.64 ) CH 4 / O 2 / N 2 flame and in H 2 / O 2 / N 2 flames. The optimal excitation pulse width for interference-free H atom detection depends on the relative concentrations of hydrogen atoms and photolytic precursors, the flame temperature, and the laser path length within the flame.

© 2008 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Spectroscopy

History
Original Manuscript: May 6, 2008
Manuscript Accepted: July 24, 2008
Published: September 4, 2008

Citation
Waruna D. Kulatilaka, Brian D. Patterson, Jonathan H. Frank, and Thomas B. Settersten, "Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames," Appl. Opt. 47, 4672-4683 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-26-4672


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, “Two-photon-excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365-367(1983). [CrossRef] [PubMed]
  2. J. T. Salmon and N. M. Laurendeau, “Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H2/O2/N2 flat flames with photoionization controlled-loss spectroscopy,” Appl. Opt. 26, 2881-2891 (1987). [CrossRef] [PubMed]
  3. J. T. Salmon and N. M. Laurendeau, “Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames,” Combust. Flame 74, 221-231 (1988). [CrossRef]
  4. J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Inst. 22, 1403-1411 (1988).
  5. M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, and P.-L. Zhang, “Three-photon-excited fluorescence detection of atomic-hydrogen in an atmospheric-pressure flame,” Opt. Lett. 9, 211-213 (1984). [CrossRef] [PubMed]
  6. K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998). [CrossRef]
  7. A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).
  8. J. E. M. Goldsmith, “Two-step saturated fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 10, 116-118(1985). [CrossRef] [PubMed]
  9. S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).
  10. J. E. M. Goldsmith and N. M. Laurendeau, “Single-laser two-step fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 15, 576-578 (1990). [CrossRef] [PubMed]
  11. J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic hydrogen in flames,” J. Opt. Soc. Am. B 6, 1979-1985 (1989). [CrossRef]
  12. U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990). [CrossRef]
  13. J. A. Gray, J. E. M. Goldsmith, and R. Trebino, “Detection of atomic hydrogen by two-color laser-induced grating spectroscopy,” Opt. Lett. 18, 444-446 (1993). [CrossRef] [PubMed]
  14. J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993). [CrossRef]
  15. K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003). [CrossRef]
  16. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004). [CrossRef]
  17. M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32, 1569-1571 (2007). [CrossRef] [PubMed]
  18. W. D. Kulatilaka, R. P. Lucht, S. Roy, J. R. Gord, and T. B. Settersten, “Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy,” Appl. Opt. 46, 3921-3927 (2007). [CrossRef] [PubMed]
  19. J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981). [CrossRef]
  20. W. K. Bischel, B. E. Perry, and D. R. Crosley, “Detection of fluorescence from O and H atoms induced by two-photon absorption,” Appl. Opt. 21, 1419-1429 (1982). [CrossRef] [PubMed]
  21. J. E. M. Goldsmith, “Photochemical effects in 205 nm, two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 11, 416-418 (1986). [CrossRef] [PubMed]
  22. G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997). [CrossRef]
  23. A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976). [CrossRef]
  24. K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).
  25. P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).
  26. L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997). [CrossRef]
  27. D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990). [CrossRef]
  28. J. Vattulainen, L. Wallenius, J. Stenberg, R. Hernberg, and V. Linna, “Experimental determination of SO2, C2H2, and O2 UV absorption cross sections at elevated temperatures and pressures,” Appl. Spectrosc. 51, 1311-1315 (1997). [CrossRef]
  29. B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995). [CrossRef]
  30. R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998). [CrossRef]
  31. T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003). [CrossRef]
  32. J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004). [CrossRef] [PubMed]
  33. J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005). [CrossRef]
  34. S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995). [CrossRef]
  35. R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).
  36. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).
  37. J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004). [CrossRef]
  38. P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000). [CrossRef]
  39. W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited