OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 26 — Sep. 10, 2008
  • pp: 4723–4728

High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres

J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer  »View Author Affiliations


Applied Optics, Vol. 47, Issue 26, pp. 4723-4728 (2008)
http://dx.doi.org/10.1364/AO.47.004723


View Full Text Article

Enhanced HTML    Acrobat PDF (8815 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.6640) Image processing : Superresolution
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: July 10, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 11, 2008
Published: September 9, 2008

Citation
J. Garcia-Sucerquia, D. C. Alvarez-Palacio, and H. J. Kreuzer, "High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres," Appl. Opt. 47, 4723-4728 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-26-4723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Talbot, “Facts relating to optical science. IV,” Philos. Mag. 9, 401-407 (1836).
  2. Lord Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. 11, 196-205(1881).
  3. J. M. Cowley and A. F. Moodie, “Fourier images. I. The point source,” Proc. Phys. Soc. B 70, 486-496 (1956). [CrossRef]
  4. J. M. Cowley and A. F. Moodie, “Fourier images. II. The out-focus patterns,” Proc. Phys. Soc. B 70, 497-504 (1956). [CrossRef]
  5. J. M. Cowley and A. F. Moodie, “Fourier images. III. Finite sources,” Proc. Phys. Soc. B 70, 505-513 (1956). [CrossRef]
  6. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772-778 (1967). [CrossRef]
  7. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 3-101 (1989).
  8. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  9. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” PRLC Newsletter 95, 053902 (2005) and references therein.
  10. R. Maripov and Y. Smanov, “The Talbot effect (a self-imaging phenomenon) in holography,” J. Opt. 25, 3-8 (1994). [CrossRef]
  11. S. De Nicola, P. Ferraro, G. Coppola, A. Finizio, G. Pierattini, and S. Grilli, “Talbot self-image effect in digital holography and its application to spectrometry,” Opt. Lett. 29, 104-106 (2004). [CrossRef] [PubMed]
  12. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt. 23, 862-871(1984). [CrossRef] [PubMed]
  13. M. Takeda and S. Kobayashi, “Lateral aberration measurements with a digital Talbot interferometer,” Appl. Opt. 23, 1760-1764 (1984). [CrossRef] [PubMed]
  14. G. S. Spagnolo, D. Ambrosini, and D. Paoletti, “Displacement measurement using the Talbot effect with a Ronchi grating,” J. Opt. A 4, S376-S380 (2002). [CrossRef]
  15. D. S. Mehta, S. K. Dubey, C. Shakher, and M. Takeda, “Two-wavelength Talbot effect and its application for three-dimensional step-height measurement,” Appl. Opt. 45, 7602-7609 (2006). [CrossRef]
  16. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, “Theory of the point source electron microscope,” Ultramicroscopy 45, 381-403 (1992).
  17. H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” U.S. patent 6,411,406 B1 (25 June, 2002).
  18. H. J. Kreuzer and P. Klages, “DIHM--a software package for the reconstruction of digital in-line and other holograms” (Helix Science Applications, 2006). [CrossRef] [PubMed]
  19. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001). [CrossRef] [PubMed]
  20. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164-166 (2003). [CrossRef] [PubMed]
  21. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef]
  22. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef] [PubMed]
  23. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211-1213 (2006). [CrossRef] [PubMed]
  24. D. Joyeux and Y. Cohen-Sabban, “High magnification self-imaging,” Appl. Opt. 21, 625-627 (1982). [CrossRef]
  25. Y. Cohen-Sabban and D. Joyeux, “Aberration-free nonparaxial self-imaging,” J. Opt. Soc. Am. 73, 707-719 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited