OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 26 — Sep. 10, 2008
  • pp: 4767–4776

Novel approaches to the design of halftone masks for analog lithography

Marcel Teschke and Stefan Sinzinger  »View Author Affiliations


Applied Optics, Vol. 47, Issue 26, pp. 4767-4776 (2008)
http://dx.doi.org/10.1364/AO.47.004767


View Full Text Article

Enhanced HTML    Acrobat PDF (6799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report novel approaches to the design of halftone masks for analog lithography. The approaches are derived from interferometric phase contrast. In a first step we show that the interferometric phase-contrast method with detour holograms can be reduced into a single binary mask. In a second step we introduce the interferometric phase-contrast method by interference of the object wavefront with the conjugate object wavefront. This method also allows for a design of a halftone mask. To use kinoform holograms as halftone phase masks, we show in a third step the combination of the zeroth-order phase-contrast technique with the interferometric phase-contrast method.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 21, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: July 20, 2008
Published: September 9, 2008

Citation
Marcel Teschke and Stefan Sinzinger, "Novel approaches to the design of halftone masks for analog lithography," Appl. Opt. 47, 4767-4776 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-26-4767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sinzinger and J. Jahns, Microoptics (Wiley, 2003). [CrossRef]
  2. W. Däschner, M. Larsson, and S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534-2539 (1995). [CrossRef] [PubMed]
  3. U. Krackhardt, N. Streibl, and J. Schwider, “Fabrication errors of computer-generated multilevel phase holograms,” Optik (Stuttgart) 95, 137-146 (1994).
  4. J. A. Cox, B. Fritz, and T. Werner, “Process error limitations on binary optics performance,” Proc. SPIE 1555, 80-88(1991). [CrossRef]
  5. M. B. Stern, M. Holz, S. S. Medeiros, and R. E. Knowlden, “Fabrication binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117-3121 (1991). [CrossRef]
  6. Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, and G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449-454 (1994). [CrossRef]
  7. D. R. Purdy, “Fabrication of complex micro-optic components using photo-sculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167-175 (1994). [CrossRef]
  8. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279-288 (1997). [CrossRef]
  9. M. Teschke and S. Sinzinger, “Modified phase contrast for recording of holographic optical elements,” Opt. Lett. 32, 2067-2069 (2007). [CrossRef] [PubMed]
  10. M. Teschke, R. Heyer, M. Fritzsche, S. Stoebenau, and S. Sinzinger, “Application of an interferometric phase contrast to fabricate arbitrary diffractive optical elements,” Appl. Opt. 47, 2550-2556 (2008). [CrossRef] [PubMed]
  11. J. C. Pizolato, Jr., G. A. Cirino, C. Goncalves, and L. G. Neto, “Zeroth-order phase-contrast technique,” Appl. Opt. 46, 7604-7613 (2007). [CrossRef] [PubMed]
  12. A. W. Lohmann and S. Sinzinger, “Graphic codes for computer holography,” Appl. Opt. 34, 3172-3178 (1995). [CrossRef] [PubMed]
  13. P. K. Rastogi, Holographic Interferometry (Springer, 1994).
  14. D. Malacara, Optical Shop Testing (Wiley, 1992).
  15. S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Tech. Mess. 73, 149-156 (2006). [CrossRef]
  16. S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.
  17. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  18. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005).
  19. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004-5013 (1999). [CrossRef]
  20. D. Mendlovic, G. Shabtay, U. Levi, Z. Zalevsky, and E. Marom, “Encoding technique for design of zero-order (on-axis) Fraunhofer computer-generated holograms,” Appl. Opt. 36, 8427-8434 (1997). [CrossRef]
  21. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  23. J. Glückstad and P. C. Mogensen, “Optimal phase contrast imaging in common path interferometry,” Appl. Opt. 40, 268-282 (2001). [CrossRef]
  24. C. Goncalves, J. C. Pizolato, Jr., G. A. Cirino, and L. G. Neto, “White light computer-generated element based on halftoning technique,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (Optical Society of America, 2007). [PubMed]
  25. J. Sung, H. Hockel, J. Brown, and E. G. Johnson, “Refractive mirco-optics fabrication with a 1-D binary phase grating mask applicable to MOEMS processing,” J. Microlith. Microfab. Microsyst. 4, 041603 (2005). [CrossRef]
  26. W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, “Simulation and experimental study of gray-tone lithography for the fabrication of arbitrarily shaped surfaces,” in Micro Electro Mechanical Syytems, MEMS '94, (IEEE, 1994), pp. 205-210.
  27. D. C. O'Shea and W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518-7526 (1995). [CrossRef] [PubMed]
  28. J. Yao, J. Su, J. Du, Y. Zhang, F. Gao, F. Gao, Y. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53, 531-534 (2000). [CrossRef]
  29. B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a deep silicon phase Fresnel lens using gray-scale lithography and deep reactive ion etching,” J. Microelectromech. Syst. 13, 113-120 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited