OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 4849–4855

Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell

In-Ho Bae, Han Seb Moon, Min-Koeung Kim, Lim Lee, and Jung Bog Kim  »View Author Affiliations

Applied Optics, Vol. 47, Issue 27, pp. 4849-4855 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electromagnetically induced Bragg reflection with a stationary coupling field in an Rb vapor cell with a 6.67 kPa neon buffer gas was studied. When the coupling field was spatially modulated as a stationary wave, a transmission reduction of the probe field was observed, while simultaneously a reflected probe field was detected in the backward direction. Instead of absorbing a fraction of the probe laser in the Rb vapor, the modulated electromagnetically induced transparency medium reflected it, corresponding to a Bragg reflection. The spectrum in the 5 S 1 / 2 5 P 1 / 2 Λ-type system of Rb 87 atoms was investigated as a function of the coupling laser frequency detuning, the stationary coupling laser power, the vapor cell temperature, and the coupling laser power ratio.

© 2008 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 14, 2008
Revised Manuscript: August 8, 2008
Manuscript Accepted: August 16, 2008
Published: September 11, 2008

In-Ho Bae, Han Seb Moon, Min-Koeung Kim, Lim Lee, and Jung Bog Kim, "Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell," Appl. Opt. 47, 4849-4855 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991). [CrossRef] [PubMed]
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995). [CrossRef] [PubMed]
  3. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996). [CrossRef] [PubMed]
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997). [CrossRef]
  5. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995). [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  7. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003). [CrossRef] [PubMed]
  8. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457-472(2003). [CrossRef]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003). [CrossRef] [PubMed]
  10. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  11. D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007). [CrossRef]
  12. T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003). [CrossRef] [PubMed]
  13. H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998). [CrossRef]
  14. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999). [CrossRef]
  15. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002). [CrossRef]
  16. Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998). [CrossRef]
  17. Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999). [CrossRef]
  18. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  19. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003). [CrossRef] [PubMed]
  20. X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005). [CrossRef]
  21. X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007). [CrossRef]
  22. D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited