OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 4856–4863

Dispersion measurement of inert gases and gas mixtures at 800 nm

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay  »View Author Affiliations

Applied Optics, Vol. 47, Issue 27, pp. 4856-4863 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N 2 , Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5 m long tube between 0.05 mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800 nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz–Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1 × 10 9 (Ne) and 4.3 × 10 7 (Xe) for the refractive indices, from UV to near IR.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion
(320.5540) Ultrafast optics : Pulse shaping
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Physical Optics

Original Manuscript: May 14, 2008
Manuscript Accepted: July 21, 2008
Published: September 11, 2008

A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, "Dispersion measurement of inert gases and gas mixtures at 800 nm," Appl. Opt. 47, 4856-4863 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser-pulses in air,” Opt. Lett. 20, 73-75 (1995). [CrossRef] [PubMed]
  2. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000). [CrossRef] [PubMed]
  3. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004). [CrossRef]
  4. C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005). [CrossRef] [PubMed]
  5. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006). [CrossRef]
  6. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007). [CrossRef]
  7. C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament,” Opt. Lett. 32, 868-870 (2007). [CrossRef] [PubMed]
  8. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006). [CrossRef]
  9. C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006). [CrossRef]
  10. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  11. T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003). [CrossRef]
  12. T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999). [CrossRef]
  13. B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966). [CrossRef]
  14. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature, and composition,” Appl. Opt. 6, 51-59 (1967). [CrossRef] [PubMed]
  15. E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958-962 (1972). [CrossRef]
  16. P. E. Ciddor, “Refractive index of air: New equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996). [CrossRef] [PubMed]
  17. K. P. Birch, “Precise determination of refractometric parameters for atmospheric gases,” J. Opt. Soc. Am. A 8, 647-651 (1991). [CrossRef]
  18. P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21-37 (1974). [CrossRef]
  19. C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59, 199-203 (1969). [CrossRef]
  20. J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988). [CrossRef]
  21. E. R. Peck and D. J. Fisher, “Dispersion of argon,” J. Opt. Soc. Am. 54, 1362-1364 (1964). [CrossRef]
  22. U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990). [CrossRef]
  23. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059-1063 (1966). [CrossRef]
  24. A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960). [CrossRef]
  25. W. C. Marlow, “Hakenmethode,” Appl. Opt. 6, 1715-1724 (1967). [CrossRef] [PubMed]
  26. H. J. Kim and B. W. James, “The use of Fourier transform techniques for the analysis of hook interferograms,” Opt. Commun. 118, 542-545 (1995). [CrossRef]
  27. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipőcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788-790 (1995). [CrossRef] [PubMed]
  28. K. Misawa and T. Kobayashi, “Femtosecond Sagnac interferometer for phase spectroscopy,” Opt. Lett. 20, 1550-1552 (1995). [CrossRef] [PubMed]
  29. D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997). [CrossRef]
  30. A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002). [CrossRef]
  31. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486-488 (1996). [CrossRef] [PubMed]
  32. J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003). [CrossRef]
  33. B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005). [CrossRef]
  34. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006). [CrossRef] [PubMed]
  35. K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007). [CrossRef]
  36. K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007). [CrossRef]
  37. K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007). [CrossRef] [PubMed]
  38. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008). [CrossRef]
  39. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995). [CrossRef]
  40. L. R. Pendrill, “Refractometry and gas density,” Metrologia 41, S40-S51 (2004). [CrossRef]
  41. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977-979 (1993). [CrossRef] [PubMed]
  42. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., (CRC Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited