OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 4940–4944

Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology

Igor A. Bufetov, Konstantin M. Golant, Sergey V. Firstov, Artem V. Kholodkov, Alexey V. Shubin, and Evgeny M. Dianov  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 4940-4944 (2008)
http://dx.doi.org/10.1364/AO.47.004940


View Full Text Article

Enhanced HTML    Acrobat PDF (3194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma chemical technology is experimentally applied to the fabrication of a Bi-activated alumosilicate-core pure-silica-cladding fiber preform. To the best of our knowledge, this is the first time this technology has been applied in this way. We measure gain efficiency at pumping by a 1058 nm wavelength Yb fiber laser in a piece of a newly obtained fiber 20 m in length within 100 1200 nm wavelengths band. The gain efficiency reaches as high as 0.2 dB / mW . Bi-activated alumosilicate-core pure-silica-cladding fiber that is not more than 12 m in length serves a basis for a 1 W output power fiber laser emitting at the wavelength of 1160 nm with 8% slope efficiency. We also measure the photoluminescence spectrum and kinetics of Bi centers responsible for laser emission under the excitation of 193 nm wavelength ArF laser pulses.

© 2008 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3380) Lasers and laser optics : Laser materials
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4480) Lasers and laser optics : Optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 22, 2008
Revised Manuscript: July 16, 2008
Manuscript Accepted: August 8, 2008
Published: September 17, 2008

Citation
Igor A. Bufetov, Konstantin M. Golant, Sergey V. Firstov, Artem V. Kholodkov, Alexey V. Shubin, and Evgeny M. Dianov, "Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology," Appl. Opt. 47, 4940-4944 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-27-4940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40, L279 (2001). [CrossRef]
  2. T. Suzukia and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O─Al2O3─SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006). [CrossRef]
  3. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Sol. State Commun. 140, 38-41 (2006). [CrossRef]
  4. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, and E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31, 2966-2968 (2006). [CrossRef] [PubMed]
  5. T. Murata and T. Mouri, “Matrix effect on absorption and infrared fluorescence properties of Bi ions in oxide glasses,” J. Non-Cryst. Sol. 353, 2403-2407 (2007). [CrossRef]
  6. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007). [CrossRef]
  7. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003). [CrossRef]
  8. J. Ren, H. Dong, H. Zeng, X. Hu, C. Zhu, and J. Qio, “Ultrabroadband infrared luminescence and optical amplification in bismuth-doped germanosilicate slass,” IEEE Photonics Technol. Lett. 19, 1395-1397 (2007). [CrossRef]
  9. Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, “Amplification in bismuth-doped silica glass at second telecommunication windows,” in Conference on Lasers & Electro-Optics CLEO'2005 (Optical Society of America, 2005), paper CThR6.
  10. T. Haruna, M. Kakui, T. Taru, S. Ishikawa, and M. Onishi, “Silica-based bismuth-doped fiber for ultra broad band light-source and optical amplification around 1.1 μm,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper MC3.
  11. S. Kishimoto, M. Tsuda, K. Sakaguchi, Y. Fijimoto, and M. Nakatsuka, “Novel bismuth-doped optical amplifiers for 1.3-micron telecommunication band,” Proceedings of the XX IGG in Kyoto, 27 September-1 October 2004.
  12. Y.-S. Seo, C. Lim, Y. Fujimoto, and M. Nakatsuka, “9.6 dB Gain at a 1310 nm wavelength for a bismuth-doped fiber amplifier,” J. Opt. Soc. Korea 11, 63-66 (2007). [CrossRef]
  13. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005). [CrossRef]
  14. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B 24, 1749-1754 (2007). [CrossRef]
  15. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90, 031103 (2007). [CrossRef]
  16. G. P. Agraval, Nonlinear Fiber Optics (Academic, 1995).
  17. D. Pavy, M. Moisan, S. Saada, P. Chollet, P. Leprince, and J. Marrec, “Fabrication of optical fiber preforms by a new surface-plasma CVD process,” in Proceedings of 12th European Conference on Optical Communications (Barcelona, 1986), pp. 19-22.
  18. E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. N. Protopopov, S. L. Semenov, and A. G. Shebuniaev, “Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers,” Opt. Matter. 3, 181-185 (1994). [CrossRef]
  19. K. M. Golant, “Bulk silicas preparation by low pressure plasma CVD: formation of structure and point defects,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, ed. (Kluwer Academic, 2000), p. 427.
  20. A. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids 353, 530-536 (2007). [CrossRef]
  21. I. A. Bufetov, M. M. Bubnov, V. B. Neustruev, V. M. Mashinsky, A. V. Shubin, M. V. Grekov, A. N. Guryanov, V. F. Khopin, E. M. Dianov, and A. M. Prokhorov, “Raman gain properties of optical fibers with a high content of germanium and standard optical fibers,” Laser Phys. 11, 1-4 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited