Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparative evaluation of two simple diffuse reflectance models for biological tissue applications

Not Accessible

Your library or personal account may give you access

Abstract

We present a comparative evaluation of two simple diffuse reflectance models for biological tissue applications. One model is based on a widely accepted and used in biomedical optics implementation of diffusion theory, and the other one is based on a semiempirical approach derived from basic physical principles. We test the models on tissue phantoms and on human skin, utilizing a standard six-around-one optical fiber probe for light delivery and collection. We show that both models are suitable for use with an optical fiber probe and illustrate the potential, applicability, and validity range of the models.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Simple two-layer reflectance model for biological tissue applications

George Mantis and George Zonios
Appl. Opt. 48(18) 3490-3496 (2009)

Simple two-layer reflectance model for biological tissue applications: lower absorbing layer

George Zonios and Aikaterini Dimou
Appl. Opt. 49(27) 5026-5031 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved