OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 4994–5006

Design and evaluation of a THz time domain imaging system using standard optical design software

Claudia Brückner, Boris Pradarutti, Ralf Müller, Stefan Riehemann, Gunther Notni, and Andreas Tünnermann  »View Author Affiliations

Applied Optics, Vol. 47, Issue 27, pp. 4994-5006 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (20297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 μm . ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1   line pair / mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7   line pairs / mm .

© 2008 Optical Society of America

OCIS Codes
(220.4830) Optical design and fabrication : Systems design
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: April 23, 2008
Revised Manuscript: July 17, 2008
Manuscript Accepted: August 6, 2008
Published: September 18, 2008

Claudia Brückner, Boris Pradarutti, Ralf Müller, Stefan Riehemann, Gunther Notni, and Andreas Tünnermann, "Design and evaluation of a THz time domain imaging system using standard optical design software," Appl. Opt. 47, 4994-5006 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007). [CrossRef]
  2. C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36. [CrossRef] [PubMed]
  3. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007). [CrossRef] [PubMed]
  4. P. F. Goldsmith, Quasioptical Systems (IEEE, 1998). [CrossRef]
  5. C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002). [CrossRef]
  6. ZEMAX Optical Design Program User's Guide (Focus Software Inc., 2007).
  7. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, Vol. 11, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 125-200.
  8. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379-1386 (2004). [CrossRef]
  9. C. Wild, “Diamond optical components,” in Fraunhofer IAF Annual Report (2004), http://www.iaf.fraunhofer.de/pdf/jahresbericht-2004/diamond-optical-comp.pdf.
  10. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006). [CrossRef]
  11. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74-83 (1999). [CrossRef]
  12. B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006). [CrossRef]
  13. D. You and P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B 14, 1651-1655 (1997). [CrossRef]
  14. S. Hunsche, S. Feng, H. G. Winful, A. Leitensdorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025-2028 (1999). [CrossRef]
  15. Zeon Corporations, Zeonex Product Brochure, http://www.zeonchemicals.com/zeonex.aspx.
  16. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005). [CrossRef]
  17. C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008. [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.
  20. T. D. Milster, “Transfer function-diffraction and interferometry,” in OPTI 505 Spring 2002, (University of Arizona, 2002), http://www.optics.arizona.edu/Milster/505%20Lecture_2002/opti_505_lec_spring_2002.htm.
  21. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007). [CrossRef] [PubMed]
  22. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited