OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 5019–5027

Infrared Mueller matrix acquisition and preprocessing system

Arthur H. Carrieri, David J. Owens, and Jonathan C. Schultz  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 5019-5027 (2008)
http://dx.doi.org/10.1364/AO.47.005019


View Full Text Article

Enhanced HTML    Acrobat PDF (12133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analog Mueller matrix acquisition and preprocessing system (AMMS) was developed for a photopolarimetric-based sensor with 9.1 12.0 μm optical bandwidth, which is the middle infrared wavelength-tunable region of sensor transmitter and “fingerprint” spectral band for chemical–biological (analyte) standoff detection. AMMS facilitates delivery of two alternate polarization-modulated CO 2 laser beams onto subject analyte that excite/relax molecular vibrational resonance in its analytic mass, primes the photoelastic-modulation engine of the sensor, establishes optimum throughput radiance per backscattering cross section, acquires Mueller elements modulo two laser beams in hexadecimal format, preprocesses (normalize, subtract, filter) these data, and formats the results into digitized identification metrics. Feed forwarding of formatted Mueller matrix metrics through an optimally trained and validated neural network provides pattern recognition and type classification of interrogated analyte.

© 2008 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6710) Instrumentation, measurement, and metrology : Susceptibility
(290.1350) Scattering : Backscattering
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Fourier Optics and Optical Signal Processing

History
Original Manuscript: March 11, 2008
Manuscript Accepted: July 25, 2008
Published: September 18, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Arthur H. Carrieri, David J. Owens, and Jonathan C. Schultz, "Infrared Mueller matrix acquisition and preprocessing system," Appl. Opt. 47, 5019-5027 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-27-5019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jones, “New calculus for the treatment of optical systems. VII: Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671-685 (1947). [CrossRef]
  2. J. D. Jackson, “Plane electromagnetic waves and wave propagation,” in Classical Electrodynamics (Wiley, 1975), pp. 273-278.
  3. R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323-1332 (1980). [CrossRef] [PubMed]
  4. J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985). [CrossRef] [PubMed]
  5. Y. Wenyan, “The Mueller scattering matrix of two parallel chiral circular cylinders,” Microw. Opt. Technol. Lett. 11, 78-83 (1996). [CrossRef]
  6. M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998). [CrossRef]
  7. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42, 4389-4395 (2003). [CrossRef] [PubMed]
  8. J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999). [CrossRef]
  9. A. A. Kokhanovsky, “Parameterization of the Mueller matrix of oceanic waters,” J. Geophys. Res. 108, 3175 (2003). [CrossRef]
  10. E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985). [CrossRef]
  11. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002). [CrossRef]
  12. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005). [CrossRef]
  13. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402-2404 (2004). [CrossRef] [PubMed]
  14. E. Bahar, “Mueller matrices for waves reflected and transmitted through chiral materials: waveguide modal solutions and applications,” J. Opt. Soc. Am. B 24, 1610-1619 (2007). [CrossRef]
  15. A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).
  16. A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998). [CrossRef]
  17. A. H. Carrieri, C. J. Schmitt, C. M. Herzinger, and J. O. Jensen, “Computation, visualization and animation of infrared Mueller matrix elements by surfaces that are absorbing and randomly rough,” Appl. Opt. 32, 6264-6269 (1993). [CrossRef] [PubMed]
  18. A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007). [CrossRef]
  19. S. M. Haugland, E. Z. Bahar, and A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized IR scattering,” Appl. Opt. 31, 3847-3852 (1992). [CrossRef] [PubMed]
  20. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759-3766 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited