OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 5041–5050

Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach–Zehnder interferometer arm: based on 2D photonic crystals

M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 5041-5050 (2008)
http://dx.doi.org/10.1364/AO.47.005041


View Full Text Article

Enhanced HTML    Acrobat PDF (10257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using an array of m × n nonlinear ring resonators ( m = 1 , 3, 5, and n = 1 , 2, 3) coupled to the upper arm of a Mach–Zehnder interferometer (MZI), we have proposed an all-optical switch structure. Using a 5 × 3 array, we have shown the possibility of designing an all-optical switching device with a threshold intensity as low as 15 mW / m 2 and switching window of 35 ps . While using m × 1 arrays, we have achieved switching windows smaller than 10 ps , at the expense of higher switching thresholds, ranging from 37 to 55 mW / m 2 . The whole structure is based on a square lattice photonic crystal of lattice constant a = 600 nm , formed by rods of radius r = 90 nm in an air background. The linear rods’ refractive index is taken to be the same as that of Si 0.75 Ge 0.25 ; i.e., n r = 3.6 , whereas the nonlinear rod’s refractive index and Kerr index parameter are taken to be n 0 = 1.4 and n 2 = 10 14 m 2 / W . The center wavelength at which the nonlinear rings are designed to make the resonance is taken to be λ 0 = 1550 nm in free space.

© 2008 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: May 1, 2008
Revised Manuscript: August 21, 2008
Manuscript Accepted: August 22, 2008
Published: September 19, 2008

Citation
M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami, "Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals," Appl. Opt. 47, 5041-5050 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-27-5041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). [CrossRef]
  2. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004). [CrossRef]
  3. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals,” Appl. Opt. 40, 2247-2252 (2001). [CrossRef]
  4. G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, “Ultrafast all-optical switching in one-dimensional photonic crystal with two defects,” Opt. Express 14, 858-865 (2006). [CrossRef] [PubMed]
  5. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, “High-contrast light-by-light switching and and gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006). [CrossRef] [PubMed]
  6. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.
  7. S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003). [CrossRef]
  8. T. P. White, C. M. de Sterke, R. C. Mcphedran, T. Huang, and L. C. Botten “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express 12, 3035-3045 (2004). [CrossRef] [PubMed]
  9. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004). [CrossRef] [PubMed]
  10. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007). [CrossRef] [PubMed]
  11. Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008). [CrossRef] [PubMed]
  12. H. J. R. Dutton, Understanding Optical Communications (International Business Machines Corporation, 1998).
  13. S. V. Kartalopoulos, DWDM: Networks, Devices, and Technology (Wiley, 2003).
  14. E. A. Camargo, H. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588-592 (2004). [CrossRef] [PubMed]
  15. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005). [CrossRef]
  16. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002). [PubMed]
  17. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161-167 (2004). [CrossRef] [PubMed]
  18. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003). [CrossRef]
  19. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004). [CrossRef]
  20. I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002). [CrossRef]
  21. K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998). [CrossRef]
  22. K. Inoue, K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlog, 2004), pp. 274-277.
  23. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  24. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media” IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  27. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited