OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 27 — Sep. 20, 2008
  • pp: 5051–5060

Limitations of self-phase-modulation-based tunable delay system for all-optical buffer design

Ravi Pant, Michael D. Stenner, and Mark A. Neifeld  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 5051-5060 (2008)
http://dx.doi.org/10.1364/AO.47.005051


View Full Text Article

Enhanced HTML    Acrobat PDF (3856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The distortion, noise, and bit-delay performance of a self-phase-modulation-based tunable delay system are analyzed. The pulse amplification required for achieving large spectral broadening results in large amplifier noise. We quantify the resulting delay versus signal-to-noise ratio trade-off. We demonstrate that for high bit rates it is difficult to achieve both large bit delay and good data fidelity. We find that for a given bit rate, reducing the duty cycle improves the fractional bit delay. For a duty cycle of 16%, a maximum bit delay of 15 bits is achieved.

© 2008 Optical Society of America

OCIS Codes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(200.4490) Optics in computing : Optical buffers

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 28, 2008
Revised Manuscript: July 14, 2008
Manuscript Accepted: August 16, 2008
Published: September 19, 2008

Citation
Ravi Pant, Michael D. Stenner, and Mark A. Neifeld, "Limitations of self-phase-modulation-based tunable delay system for all-optical buffer design," Appl. Opt. 47, 5051-5060 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-27-5051


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Herraez, K. Y. Song, and L. Thevenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006). [CrossRef]
  2. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201-206 (2007). [CrossRef]
  3. T. Schneider, M. Junker, and K.-U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006). [CrossRef] [PubMed]
  4. Z. Zhu and D. J. Gauthier, “Nearly transparent SBS slow light in an optical fiber,” Opt. Express 14, 7238-7245 (2006). [CrossRef] [PubMed]
  5. A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866-5876 (2006). [CrossRef] [PubMed]
  6. Z. Lu, Y. Dong and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871-1877 (2007). [CrossRef] [PubMed]
  7. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782-1784(2005). [CrossRef] [PubMed]
  8. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006). [CrossRef] [PubMed]
  9. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye-diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007). [CrossRef] [PubMed]
  10. Z. Shi, R. W. Boyd, R. Pant, M. D. Stenner, M. A. Neifeld, Z. Zhu, and D. J. Gauthier, “Design of a tunable time-delay element using multiple gain lines for large fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007). [CrossRef] [PubMed]
  11. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008). [CrossRef] [PubMed]
  12. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022-12027 (2006). [CrossRef] [PubMed]
  13. S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895-7902(2006). [CrossRef] [PubMed]
  14. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, 1998 (IEEE, 1998), Vol. 1, pp. 475-476.
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Acadmic, 2001).
  16. S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004). [CrossRef]
  17. J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000). [CrossRef]
  18. R. Pant, M. D. Stenner, and M. A. Neifeld, “Distortion, noise, and delay study for self-phase modulation based slow-light system,” in Laser Science, OSA Technical Digest (CD) (Optical Society of America, 2007), paper LWE4.
  19. M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990). [CrossRef]
  20. J. Sharping, Y. Okawachi, J. V. Howe, C. Xu, Y. Wang, A. Wilner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  21. I. Fazal, O. Yilmaz, S. Nuccio, B. Zhang, A. E. Wilner, C. Langrock, and M. M. Fejer, “Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion,” Opt. Express 15, 10492-10497 (2007). [CrossRef] [PubMed]
  22. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375-2377 (2005). [CrossRef] [PubMed]
  23. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094-2102 (2005). [CrossRef]
  24. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004). [CrossRef]
  25. A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006). [CrossRef]
  26. O. Wada, “Femtosecond semiconductor-based optoelectronic devices for optical-communication systems,” Opt. Quantum Electron. 32, 453-471 (2000). [CrossRef]
  27. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Wilner, and D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878-1883 (2007). [CrossRef] [PubMed]
  28. Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004). [CrossRef]
  29. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited