OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: 5087–5097

Properties of strong anisotropic a-axis single-crystal fiber with an applied electric field

Jiangbo Xin, Yanwei Du, Dewei Gong, and Zhongxiang Zhou  »View Author Affiliations

Applied Optics, Vol. 47, Issue 28, pp. 5087-5097 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (6975 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of an applied electric field on the properties of strongly anisotropic a-axis single-crystal fiber is studied theoretically. We solve the electromagnetic field equations for strongly anisotropic a-axis single-crystal fiber and numerically analyze the mode characteristics of the fiber that conducts only the zeroth-order elementary mode. We discuss the effects that an applied electric field has on the refractive index anisotropy and the mode characteristics of the fiber that conducts only the zeroth-order elementary mode.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 6, 2008
Revised Manuscript: July 27, 2008
Manuscript Accepted: August 11, 2008
Published: September 23, 2008

Jiangbo Xin, Yanwei Du, Dewei Gong, and Zhongxiang Zhou, "Properties of strong anisotropic a-axis single-crystal fiber with an applied electric field," Appl. Opt. 47, 5087-5097 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991). [CrossRef]
  2. Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993). [CrossRef]
  3. Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994). [CrossRef]
  4. Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001). [CrossRef]
  5. K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004). [CrossRef]
  6. J. H. Sharp, “Graded-index characteristics in single-crystal fibers,” Opt. Lett. 23, 109-110 (1998). [CrossRef]
  7. W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000). [CrossRef]
  8. A. S. S. de Camargo, L. A. O. Nunes, D. R. Ardila, and J. P. Andreeta, “Excited-state absorption and 1064-nm end-pumped laser emission of Nd:YVO4 single-crystal fiber grown by laser-heated pedestal growth,” Opt. Lett. 29, 59-61 (2004). [CrossRef] [PubMed]
  9. S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005). [CrossRef]
  10. S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008). [CrossRef]
  11. M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.
  12. R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000). [CrossRef]
  13. Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000). [CrossRef]
  14. W. L. Mammel and L. G. Cohen, “Numerical prediction of fiber transmission characteristics from arbitrary refractive-index profiles,” Appl. Opt. 21, 699-703 (1982). [CrossRef] [PubMed]
  15. A. W. Snyder, J. D. Love, and R. A. Sammut, “Green's-function methods for perturbed optical fibers,” J. Opt. Soc. Am. 72, 1131-1135 (1982). [CrossRef]
  16. A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984). [CrossRef]
  17. A. Tonning, “Circularly symmetric optical waveguide with strong anisotropy,” IEEE Trans. Microwave Theory Tech. MTT-30, 790-794 (1982).]. [CrossRef]
  18. C.-L. Chen, “An analysis of high birefringence fibers,” J. Lightwave Technol. 5, 53-60 (1987). [CrossRef]
  19. J. D. Dai and C. K. Jen, “Analysis of cladded uniaxial single crystal fiber,” J. Opt. Soc. Am. A 8, 2021-2025 (1991). [CrossRef]
  20. R.-B. Wu, “Explicit birefringence analysis for anisotropic fibers,” J. Lightwave Technol. 10, 6-11 (1992). [CrossRef]
  21. M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267-6275 (2003). [CrossRef] [PubMed]
  22. M. Eguchi and S. Horinouchi, “Finite-element modal analysis of large-core multimode optical fibers,” Appl. Opt. 43, 2163-2167 (2004). [CrossRef] [PubMed]
  23. S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of polarization conversion in semiconductor electro-optic modulators,” Appl. Opt. 44, 1032-1038 (2005). [CrossRef] [PubMed]
  24. S. S. A. Obayya, “Scalar finite-element analysis of optical-fiber facets,” J. Lightwave Technol. 24, 2115-2121 (2006). [CrossRef]
  25. A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986). [CrossRef]
  26. M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992). [CrossRef]
  27. L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003). [CrossRef]
  28. A. D. Bresler, “Vector formulations for the field equations in anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 7, 298 (1959). [CrossRef]
  29. W. K. Burns and T. Warner, “Mode dispersion in uniaxial optical waveguides,” J. Opt. Soc. Am. 64, 441-446 (1974). [CrossRef]
  30. W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).
  31. G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995). [CrossRef]
  32. D. P. S. Saini, Y. Shimoji, R. S. F. Chang, and N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074-1076 (1991). [CrossRef] [PubMed]
  33. W. H. Yu and W. Y. Liu, Crystal Physics (U. of Science and Technology of China Press, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited