OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: 5155–5162

Study of a MEMS-based Shack–Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics

Christoph Baranec and Richard Dekany  »View Author Affiliations


Applied Optics, Vol. 47, Issue 28, pp. 5155-5162 (2008)
http://dx.doi.org/10.1364/AO.47.005155


View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a Shack–Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system’s delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack–Hartmann wavefront sensor are also presented.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(220.2740) Optical design and fabrication : Geometric optical design

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 30, 2008
Manuscript Accepted: September 2, 2008
Published: September 25, 2008

Citation
Christoph Baranec and Richard Dekany, "Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics," Appl. Opt. 47, 5155-5162 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-28-5155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Putnam, M. Snyder, T. Stalcup, and R. Angel, “Manufacture and use of a Shack-Hartmann sensor with a multifaceted prism for simultaneous sensing of multiple wavefronts,” Proc. SPIE 5490, 1138-1145 (2004). [CrossRef]
  2. D. Colucci, M. Lloyd-Hart, D. Wittman, R. Angel, A. Ghez, and B. McLeod, “A reflective Shack-Hartmann wave-front sensor for adaptive optics,” Publ. Astron. Soc. Pac. 106, 1104-1110 (1994). [CrossRef]
  3. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  4. R. Dekany, A. Bouchez, M. Britton, V. Velur, M. Troy, J. C. Shelton, and J. Roberts, “PALM-3000: visible-light AO on the 5.1 Meter Telescope,” Proc. SPIE 6272, 62720G (2006). [CrossRef]
  5. R. Dekany, “Exoearth study with TMT,” Proc. SPIE 5382, 12-20 (2004). [CrossRef]
  6. P. Wizinowich, R. Dekany, D. Gavel, C. Max, S. Adkins, B. Bauman, J. Bell, A. Bouchez, M. Britton, J. Chin, R. Flicker, E. Johansson, R. Kupke, D. Le Mignant, C. Lockwood, D. Medeiros, E. McGrath, A. Moore, C. Neyman, M. Reinig, and V. Velur, “W. M. Keck Observatorys next-generation adaptive optics facility,” Proc. SPIE 7015, 701511 (2008). [CrossRef]
  7. D. Gavel, R. Dekany, C. Max, P. Wizinowich, S. Adkins, B. Bauman, J. Bell, E. Johansson, R. Kupke, C. Lockwood, A. Moore, C. Neyman, M. Reinig, and V. Velur, “Concept for the Keck next-generation adaptive optics system,” Proc. SPIE 7015, 701567 (2008). [CrossRef]
  8. J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature 368, 203-207 (1994). [CrossRef]
  9. A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345, 985-991 (2003). [CrossRef]
  10. P. Feautrier, P. Kern, R. Dorn, G. Rousset, P. Rabou, S. Laurent, J.-L. Lizon, E. Stadler, Y. Magnard, O. Rondeaux, M. Cochard, D. Rabaud, A. Delboulbe, P. Puget, and N. Hubin, “The NAOS visible wavefront sensor,” Proc. SPIE 4007, 396-407 (2000). [CrossRef]
  11. G. Rousset, F. Lacombe, P. Puget, E. Gendron, R. Arsenault, P. Kern, D. Rabud, P.-Y. Madec, N. Hubin, G. Zins, E. Stadler, J. Charton, P. Gigan, P. Feautrier, “Status of the VLT Nasmyth Adaptive Optics System (NAOS),” Proc. SPIE 4007, 72-81(2000). [CrossRef]
  12. C. Baranec, “High-order wavefront sensing system for PALM-3000,” Proc. SPIE 7015, 70155M (2008). [CrossRef]
  13. J. Rha, D. Volez, and M. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43, 251-256 (2004). [CrossRef]
  14. L. Zhao, N. Bai, X. Li, L. Ong, Z. Fang, and A. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45, 90-94 (2006). [CrossRef] [PubMed]
  15. C. Baranec, B. J. Bauman, and M. Lloyd Hart, “Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures,” Opt. Lett. 30, 693-695(2005). [CrossRef] [PubMed]
  16. B. J. Bauman, Optical design for Extremely Large Telescope adaptive optics systems,” Ph.D. dissertation (University of Arizona, 2003).
  17. J. Andrews, S. W. Teare, S. R. Restiano, T. Martinez, C. Wilcox, and D. Wick, “A high speed reflective wave front sensor using a novel MEM device,” in 2007 IEEE Aerospace Conference (IEEE, 2007), pp. 1-6. [CrossRef]
  18. C. O'Sullivan, R. M. Redfern, N. Ageorges, H.-C. Holstenberg, W. Hackenberg, T. Ott, S. Rabien, R. Davies, and A. Eckart, “Short timescale variability of the mesospheric sodium layer,” Exp. Astron. 10, 147-156 (2000). [CrossRef]
  19. L. C. Roberts and L. W. Bradford, “Measurements of mesospheric sodium abundance above the Hawaiian Islands,” Publ. Astron. Soc. Pac. 119, 787-792 (2007). [CrossRef]
  20. M. Kenworthy, P. Hinz, R. Angel, A. Heinze, and S. Sivanandam, “Whack-a-speckle: focal plane wavefront sensing in theory and practice with a deformable secondary mirror and 5 micron camera,” Proc. SPIE 6272, 62723K (2006). [CrossRef]
  21. E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well-corrected off-axis telescope subaperture,” Astrophys. J. 658, 1386-1391(2007). [CrossRef]
  22. D. Dagel, W. Cowan, O. Spahn, G. Grossetete, A. Griñe, M. Shaw, P. Resnick, and B. Jokiel, “Large-stroke mems deformable mirrors for adaptive optics,” J. Microelectomech. Syst. 15, 572-583 (2006).
  23. B. L. Ellerbroek, C. Boyer, C. Bradley, M. C. Britton, S. Browne, R. A. Buchroeder, J.-L. Carel, M. K. Cho, M. R. Chun, R. Clare, R. Conan, L. G. Daggert, R. G. Dekany, J. H. Elias, D. A. Erickson, R. Flicker, D. T. Gavel, L. Gilles, P. Hampton, G. Herriot, M. R. Hunten, R. R. Joyce, M. Liang, B. A. Macintosh, R. Palomo, I. P. Powell, S. C. Roberts, E. Ruch, J.-C. Sinquin, M. J. Smith, J. A. Stoesz, M. Troy, G. A. Tyler, J.-P. Veran, C. R. Vogel, and Q. Yang, “A conceptual design for the Thirty Meter Telescope adaptive optics systems,” Proc. SPIE 6272, 62672I (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited