OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: 5182–5189

Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy

Betty Kouskousis, Daniel J. Kitcher, Stephen Collins, Ann Roberts, and Greg W. Baxter  »View Author Affiliations


Applied Optics, Vol. 47, Issue 28, pp. 5182-5189 (2008)
http://dx.doi.org/10.1364/AO.47.005182


View Full Text Article

Enhanced HTML    Acrobat PDF (10868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A systematic and straightforward image processing method to extract quantitative phase and refractive index data from weak phase objects is presented, obtained using differential interference contrast (DIC) microscopy. The method is demonstrated on DIC images of optical fibers where a directional integration routine is applied to the DIC images to extract phase and refractive index information using the data obtained across the whole DIC image. By applying the inverse Abel transform to the resultant phase images, an accurate refractive index profile is obtained. The method presented here is compared to the refracted near-field technique, typically used to obtain the refractive index profile of optical fibers, and shows excellent agreement. It is concluded that through careful image processing procedures, DIC microscopy can be successfully implemented to obtain quantitative phase and refractive index information of optical fibers.

© 2008 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.2960) Image processing : Image analysis
(100.5070) Image processing : Phase retrieval
(110.0180) Imaging systems : Microscopy

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 29, 2008
Revised Manuscript: August 1, 2008
Manuscript Accepted: August 28, 2008
Published: September 26, 2008

Citation
Betty Kouskousis, Daniel J. Kitcher, Stephen Collins, Ann Roberts, and Greg W. Baxter, "Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy," Appl. Opt. 47, 5182-5189 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-28-5182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles,” Opt. Quantum Electron. 11, 185-196 (1979). [CrossRef]
  2. K. W. Raine, J. G. N. Baines, and D. E. Putland, “Refractive index profiling-state of the art,” J. Lightwave Technol. 7, 1162-1169 (1989). [CrossRef]
  3. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061-2063 (2002). [CrossRef]
  4. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277-3282 (2005). [CrossRef]
  5. N. M. Dragomir, E. Ampem-Lassen, S. T. Huntington, G. W. Baxter, A. Roberts, and P. M. Farrell, “Refractive index profiling of optical fibers using differential interference contrast microscopy,” IEEE Photon. Technol. Lett. 17, 2149-2151 (2005). [CrossRef]
  6. M. Pluta, Advanced Light Microscopy (Elsevier, 1988).
  7. C. Preza, “Phase estimation using rotational diversity for differential interference contrast microscopy,” D.Sc. thesis (Washington University, Sever Institute of Technology, St. Louis, Mo., 1998).
  8. W. Urbanczyk and K. Pietraszkiewicz, “Measurements of stress anisotropy in fiber preform: modification of the dynamic spatial filtering technique,” Appl. Opt. 27, 4117-4122 (1988).
  9. W. Urbanczyk, K. Pietraszkiewicz, and W. A. Wozniak, “Novel bifunctional systems for measuring the refractive index profile and residual stress birefringence in optical fibers and preforms,” Opt. Eng. 31, 491-499 (1992). [CrossRef]
  10. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956-1959 (1988).
  11. E. B. Van Munster, L. J. Van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188, 149-157 (1997). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 3rd ed. (Pergamon, 1965), pp. xxviii and 808.
  13. C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE 2984, 72-81 (1997). [CrossRef]
  14. Z. Kam, “Microscopic differential interference contrast image processing by line integration (LID) and deconvolution,” Bioimaging 6, 166-176 (1998). [CrossRef]
  15. W. Shimada, T. Sato, and T. Yatagai, “Optical surface microtopography using phase-shifting Nomarski microscope,” Proc. SPIE 1332, 525-529 (1991). [CrossRef]
  16. B. Heise, A. Sonnleitner, and P. E. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005). [CrossRef]
  17. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7-12(2004). [CrossRef]
  18. B. P. Kouskousis, D. J. Kitcher, S. F. Collins, A. Roberts, and G. W. Baxter, “Refractive index profile of a multi-step fibre using differential interference contrast microscopy,” in COIN-ACOFT 2007, Melbourne, Australia, 2007.
  19. E. Ampem-Lassen, “Studies in photonic device imaging and characterisation,” Ph.D. dissertation (University of Melbourne, School of Physics, 2004).
  20. J. G. Wanguemert-Perez, R. Godoy-Rubio, A. Ortega-Monux, and I. Molina-Fernandez, “Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers,” J. Opt. Soc. Am. A 24, 3772-3780 (2007). [CrossRef]
  21. D. Gottlieb and C. W. Shu, “On the Gibbs phenomenon and its resolution,” SIAM Rev. 39, 644-668 (1997). [CrossRef]
  22. K. Dossou, S. LaRochelle, and M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20, 1463-1470(2002). [CrossRef]
  23. O. H. Waagaard, “Polarization-resolved spatial characterization of birefringent fiber Bragg gratings,” Opt. Express 14, 4221-4236(2006). [CrossRef]
  24. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25, 779-786 (2007). [CrossRef]
  25. J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, “Ultraviolet-induced birefringence in hydrogen-loaded optical fiber,” J. Appl. Phys. 97, 53104 (2005). [CrossRef]
  26. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789-791 (2003). [CrossRef]
  27. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332-10338 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited