OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: 5190–5196

Photonic crystal fiber for dispersion compensation

Xingtao Zhao, Guiyao Zhou, Shuguang Li, Zhaolun Liu, Dongbin Wei, Zhiyun Hou, and Lantian Hou  »View Author Affiliations


Applied Optics, Vol. 47, Issue 28, pp. 5190-5196 (2008)
http://dx.doi.org/10.1364/AO.47.005190


View Full Text Article

Enhanced HTML    Acrobat PDF (1841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersion and mode characteristics in a dual-concentric-core photonic crystal fiber, based on pure silica, are simulated by the multipole method. The fiber exhibits very large negative dispersion due to anticrossing of two individual inner core and outer core modes. Near the wavelength of 1.55 μm , we could obtain narrowband dispersion-compensating fiber with dispersion values of 23,000 ps / km / nm , broadband dispersion-compensating fiber with dispersion values from 1000 ps / km / nm to 2500 ps / km / nm over a 200 nm range, and kappa values near 300 nm , which matched well with standard single mode fiber. It shows that even if there are some changes in the structure parameters during fabrication, these fibers can still maintain a fine dispersion-compensating property.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 14, 2008
Revised Manuscript: July 3, 2008
Manuscript Accepted: August 4, 2008
Published: September 29, 2008

Citation
Xingtao Zhao, Guiyao Zhou, Shuguang Li, Zhaolun Liu, Dongbin Wei, Zhiyun Hou, and Lantian Hou, "Photonic crystal fiber for dispersion compensation," Appl. Opt. 47, 5190-5196 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-28-5190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).
  2. S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).
  3. Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
  4. S. G. Yang, Y. J. Zhang, L. N. He, and S. Z. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830-2832 (2006). [CrossRef]
  5. A. Huttunen and P. Torma, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627-635 (2005). [CrossRef]
  6. Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006). [CrossRef]
  7. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).
  8. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958-1962 (2003). [CrossRef]
  9. B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004). [CrossRef]
  10. F. Gérôme, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725-2727 (2004). [CrossRef]
  11. J. C. Knight, A. T. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
  12. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999). [CrossRef]
  13. Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).
  14. S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).
  15. X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).
  16. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, D. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
  17. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  18. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).
  19. S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007). [CrossRef]
  20. R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited