OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: 5201–5207

Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier

Alejandro Federico and Guillermo H. Kaufmann  »View Author Affiliations


Applied Optics, Vol. 47, Issue 28, pp. 5201-5207 (2008)
http://dx.doi.org/10.1364/AO.47.005201


View Full Text Article

Enhanced HTML    Acrobat PDF (27599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

ToC Category:
Image Processing

History
Original Manuscript: June 9, 2008
Revised Manuscript: August 21, 2008
Manuscript Accepted: August 21, 2008
Published: September 29, 2008

Citation
Alejandro Federico and Guillermo H. Kaufmann, "Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier," Appl. Opt. 47, 5201-5207 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-28-5201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin and M. V. Vasnetsov, “Singular Optics,” in Progress in Optics, E. Wolf, ed. (North-Holland, 2001), Vol. 42.
  2. M.V.Vasnetsov and K.Staliunas, eds., Optical Vortices, Vol. 228 of Horizons in World Physics (Nova Science, 1999).
  3. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993). [CrossRef]
  4. A. V. Martin and L. J. Allen, “Phase imaging from a diffraction pattern in the presence of vortices,” Opt. Commun. 277, 288-294 (2007). [CrossRef]
  5. V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. Kivshar, “Mapping phases of singular scalar light fields,” Opt. Lett. 33, 89-91(2008). [CrossRef]
  6. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, “Vortices and defect statistics in two-dimensional optical chaos,” Phys. Rev. Lett. 67, 3749-3752 (1991). [CrossRef]
  7. W. Wang, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental investigation of local properties and statistics of optical vortices in random wave fields,” Phys. Rev. Lett. 94, 103902-103904 (2005). [CrossRef]
  8. J. Lin, X.-C. Yuan, J. Bu, B. P. S. Ahluwalia, Y. Y. Sun, and R. E. Burge, “Selective generation of high-order optical vortices from a single phase wedge,” Opt. Lett. 32, 2927-2929 (2007). [CrossRef]
  9. Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281, 7-11 (2008). [CrossRef]
  10. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Roberts, 2006).
  11. L. R. Watkins, “Phase recovery from fringe patterns using the continuous wavelet transform,” Opt. Lasers Eng. 45, 298-303 (2007). [CrossRef]
  12. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722-8732 (2006). [CrossRef]
  13. A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120-6126 (2007). [CrossRef]
  14. N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903-995 (1998). [CrossRef]
  15. J.-P. Antoine and R. Murenzi, “Two-dimensional directional wavelets and the scale-angle representation,” Signal Process. 52, 259-281 (1996). [CrossRef]
  16. A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598-2604 (2001). [CrossRef]
  17. M. S. Soskin, V. N. Gorshkov, and M. V. Vasnetsov, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064-4075 (1997). [CrossRef]
  18. Z. Wang and A. C. Bovik, “A universal quality index,” IEEE Signal Process. Lett. 9, 81-84 (2002). [CrossRef]
  19. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982).
  20. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1989).
  21. A. Federico and G. H. Kaufmann, “Phase recovery in temporal speckle pattern interferometry using the generalized S-transform,” Opt. Lett. 33, 866-868 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited