OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5253–5260

Removal of a protective coating on Al by ion etching for high reflectance in the far ultraviolet

Juan I. Larruquert and Ritva A. M. Keski-Kuha  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5253-5260 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of ion etching on the reflectance of Al coatings in the far ultraviolet is investigated. Ion etching of an overlayer grown on Al was performed by applying 100 300 eV Ar + ions using an ion gun. Ion etching was employed to remove the oxide naturally grown on an Al film that had been in contact with atmosphere. Ion etching was also used to remove part or all of the protective Mg F 2 film on Al. The reflectance at 121.6 nm , H Lyman α line of the overlayer-removed Al surface was monitored after protecting it with a Mg F 2 layer. Ion etching on both types of coatings resulted in an excellent reflectance value at 121.6 nm , whereas a reflectance loss was observed at longer wavelengths.

© 2008 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(310.6860) Thin films : Thin films, optical properties
(350.6090) Other areas of optics : Space optics
(310.1515) Thin films : Protective coatings

ToC Category:
Physical Optics

Original Manuscript: June 3, 2008
Manuscript Accepted: July 4, 2008
Published: October 1, 2008

Juan I. Larruquert and Ritva A. M. Keski-Kuha, "Removal of a protective coating on Al by ion etching for high reflectance in the far ultraviolet," Appl. Opt. 47, 5253-5260 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Hass and W. R. Hunter, “Calculated reflectance of aluminum-overcoated iridium in the vacuum ultraviolet from 500 Å to 2000 Å,” Appl. Opt. 6, 2097-2100 (1967).
  2. W. M. Burton, “Removable volatile protective coatings for aluminised mirrors used in far-ultraviolet space astronomy,” J. Phys. D 16, L129-L132 (1983).
  3. J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Far ultraviolet reflectance measurements and optical constants of unoxidized Al films,” Appl. Opt. 34, 4892-4899 (1995).
  4. J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Optical constants of aluminum films in the extreme ultraviolet interval of 82-77 nm,” Appl. Opt. 35, 5692-5697 (1996).
  5. J. S. Edmends, C. N. Maldé, and S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471-475 (1990). [CrossRef]
  6. J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Far UV reflectance of UHV prepared Al films and its degradation after exposure to O2,” Appl. Opt. 33, 3518-3522 (1994).
  7. J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Degradation of far ultraviolet reflectance of aluminum films exposed to atomic oxygen. In-orbit coating application,” Opt. Commun. 124, 208-215 (1996).
  8. J. I. Larruquert, J. A. Méndez, and J. A. Aznárez, “Life prolongation of far ultraviolet reflecting aluminum coatings by periodic recoating of the oxidized surface,” Opt. Commun. 135, 60-64 (1997).
  9. A. V. Bruns, G. M. Grechko, A. A. Gubarev, P. I. Klimuk, V. I. Sevast'yanov, A. B. Severny, and K. P. Feoktistov, “Spectroscopy of solar active regions performed from Salyut-4,” Izv. Krym. Astrofiz. Obs. 59, 3-30 (1979).
  10. J. A. Aznárez, J. A. Méndez, J. L. Sacedón, and M. Sánchez-Avedillo, “EDMO: experimental deposition of materials in orbit,” Preparing for the Future Newsletter (ESA Publications, 1998), Vol. 8, Issue 3, pp. 12-14.
  11. Yu I. Dymshits, V. A. Korobitsyn, and A. A. Metel'nikov, “Effect of heating on the reflectivity of aluminum coatings in the vacuum ultraviolet,” Sov. J. Opt. Technol. 46, 649-651(1979).
  12. J. A. Méndez, J. I. Larruquert, and J. A. Aznárez, “Preservation of FUV aluminum reflectance by overcoating with C60 films,” Appl. Opt. 39, 149-156 (2000). [CrossRef]
  13. M. Grande, “Prospects for producing normal incidence aluminum reflectors in the 800 Å to 1200 Å range,” Internal Report RAL-84-037 (Rutherford Appleton Laboratory, 1984).
  14. S. Rusponi, C. Boragno, and U. Valbusa, “Ripple structure on Ag(110) surfaces induced by ion sputtering,” Phys. Rev. Lett. 78, 2795-2798 (1997). [CrossRef]
  15. E. Spiller, “Smoothing of multilayer x-ray mirrors by ion beam polishing,” Appl. Phys. Lett. 54, 2293-2295 (1989). [CrossRef]
  16. E. Spiller, “Enhancement of the reflectivity of multilayer x-ray mirrors by ion polishing,” Opt. Eng. 29, 609-613 (1990).
  17. H. J. Stock, G. Haindl, F. Hamelmann, D. Menke, O. Wehmeyer, U. Kleineberg, U. Heinzmann, P. Bulicke, D. Fuchs, and G. Ulm, “Carbon/titanium multilayers as soft-x-ray mirrors for the water window,” Appl. Opt. 37, 6002-6005 (1998). [CrossRef]
  18. K. Soyama, W. Ishiyama, and K. Murakami, “Enhancement of reflectivity of multilayer neutron mirrors by ion polishing: optimization of the ion beam parameters,” J. Phys. Chem. Solids 60, 1587-1590 (1999). [CrossRef]
  19. E. J. Puik, M. J. van der Wiel, H. Zeijlemaker, and J. Verhoeven, “Ion etching of thin W layers: enhanced reflectivity of W-C multilayer coatings,” Appl. Surf. Sci. 47, 63-76(1991). [CrossRef]
  20. H. J. Voorma, E. Louis, F. Bijkerk, and S. Abdali, “Angular and energy dependence of ion bombardment of Mo/Si multilayers,” J. Appl. Phys. 82, 1876-1881 (1997). [CrossRef]
  21. B. Ziberi, F. Frost, Th. Höche, and B. Rauschenbach, “Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory,” Phys. Rev. B 72, 235310(2005).
  22. E. Chason, W. L. Chan, and M. S. Bharathi, “Kinetic Monte Carlo simulations of ion-induced ripple formation: dependence on flux, temperature, and defect concentration in the linear regime,” Phys. Rev. B 74, 224103 (2006).
  23. J. F. Osantowski, “Reflectance and optical constants for Cer-Vit from 250 to 1050 Å,” J. Opt. Soc. Am. 64, 834-838 (1974).
  24. R. P. Madden, L. R. Canfield, and G. Hass, “On the vacuum-ultraviolet reflectance of evaporated aluminum before and during oxidation,” J. Opt. Soc. Am. 53, 620-625 (1963).
  25. J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam-sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
  26. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207-3219 (1983).
  27. E. Kretschmann and E. Kröger, “Reflection and transmission of light by a rough surface, including results for surface-plasmon effects,” J. Opt. Soc. Am. 65, 150-154 (1975).
  28. P. Laporte, J. L. Subtil, M. Courbon, M. Bon, and L. Vincent, “Vacuum-ultraviolet refractive index of LiF and MgF2 in the temperature range 80-300 K,” J. Opt. Soc. Am. 73, 1062-1069(1983).
  29. J. G. Endriz and W. E. Spicer, “Study of aluminum films. I. Optical studies of reflectance drops and surface oscillations on controlled-roughness films,” Phys. Rev. B 4, 4144-4159(1971).
  30. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, A. Pons, and J. A. Méndez, “Vacuum ultraviolet coatings of Al protected with MgF2 prepared both by ion-beam sputtering and by evaporation,” Appl. Opt. 46, 4871-4878 (2007). [CrossRef]
  31. J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings for narrowband imaging in the extreme ultraviolet,” Appl. Opt. 40, 1126-1131 (2001). [CrossRef]
  32. J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings with high reflectance in the EUV spectral region from 50 to 121.6 nm,” Appl. Opt. 38, 1231-1236 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited