OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5261–5271

Localization of adipose tissue embedded biliary tree vessels by use of near-infrared diffuse photon propagation models: a computational feasibility study

George Alexandrakis, Dharmendra Nadkar, Nimit L. Patel, Hanli Liu, and Edward H. Livingston  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5261-5271 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Biliary tree structures are embedded in adipose tissue and, therefore, cannot be visualized directly by the surgeon during cholecystectomy operations. This can lead to inadvertent injuries with serious complications for the patient. Computational studies were performed to assess the feasibility of noninvasively localizing these structures from spectrally resolved near-infrared reflectance measurements. Methodologies were developed for vessel localization, both on the adipose tissue surface and depthwise, by use of semi-infinite and two-layer models of diffuse photon propagation in tissues, respectively. The simulation results, along with some preliminary experimental measurements on tissue-simulating phantoms, prove the feasibility of these methods and show promise for their future clinical application.

© 2008 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 31, 2008
Revised Manuscript: July 15, 2008
Manuscript Accepted: August 22, 2008
Published: October 3, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

George Alexandrakis, Dharmendra Nadkar, Nimit L. Patel, Hanli Liu, and Edward H. Livingston, "Localization of adipose tissue embedded biliary tree vessels by use of near-infrared diffuse photon propagation models: a computational feasibility study," Appl. Opt. 47, 5261-5271 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648-650 (1998). [CrossRef]
  2. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007). [CrossRef]
  3. B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004). [CrossRef]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003). [CrossRef]
  5. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005). [CrossRef]
  6. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005). [CrossRef]
  7. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007). [CrossRef]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  9. B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005). [CrossRef]
  10. V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003). [CrossRef]
  11. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669-1678(2007). [CrossRef]
  12. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007). [CrossRef]
  13. A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).
  14. S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007). [CrossRef]
  15. I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007). [CrossRef]
  16. D. Piao, H. Xie, W. L. Zhang, J. S. Krasinski, G. L. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett. 31, 2876-2878(2006). [CrossRef]
  17. K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007). [CrossRef]
  18. E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).
  19. D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).
  20. R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).
  21. J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).
  22. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).
  23. R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.
  24. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).
  25. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998). [CrossRef]
  26. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Appl. Opt. 42, 1384-1394 (2003). [CrossRef]
  27. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000). [CrossRef]
  28. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304-2314 (1996).
  29. D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human gallbladder tissue and bile,” Appl. Opt. 32, 586-591 (1993).
  30. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699-6710(1994).
  31. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).
  32. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef]
  33. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341(2003). [CrossRef]
  34. R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).
  35. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).
  36. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001). [CrossRef]
  37. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998). [CrossRef]
  38. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689-2702 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited