OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5281–5295

Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution

Tamer F. Refaat, Syed Ismail, M. Nurul Abedin, Scott M. Spuler, Shane D. Mayor, and Upendra N. Singh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5281-5295 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (12165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Backscatter lidar detection systems have been designed and integrated at NASA Langley Research Center using IR heterojunction phototransistors. The design focused on maximizing the system signal-to-noise ratio rather than noise minimization. The detection systems have been validated using the Raman-shifted eye-safe aerosol lidar (REAL) at the National Center for Atmospheric Research. Incorporating such devices introduces some systematic effects in the form of blurring to the backscattered signals. Characterization of the detection system transfer function aided in recovering such effects by deconvolution. The transfer function was obtained by measuring and fitting the system impulse response using single-pole approximation. An iterative deconvolution algorithm was implemented in order to recover the system resolution, while maintaining high signal-to-noise ratio. Results indicated a full recovery of the lidar signal, with resolution matching avalanche photodiodes. Application of such a technique to atmospheric boundary and cloud layers data restores the range resolution, up to 60 m , and overcomes the blurring effects.

© 2008 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(250.0040) Optoelectronics : Detectors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: June 4, 2008
Revised Manuscript: August 14, 2008
Manuscript Accepted: August 15, 2008
Published: October 6, 2008

Tamer F. Refaat, Syed Ismail, M. Nurul Abedin, Scott M. Spuler, Shane D. Mayor, and Upendra N. Singh, "Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution," Appl. Opt. 47, 5281-5295 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Ambrico, A. Amodeo, P. Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847-6865 (2000). [CrossRef]
  2. S. Spuler and S. Mayor, “Raman shifter optimized for lidar at a 1.5 micron wavelength,” Appl. Opt. 46, 2990-2995 (2007). [CrossRef]
  3. J. Kaiser and K. Schmidt, “Coming to grips with the world's greenhouse gases,” Science 281, 504-506 (1998). [CrossRef]
  4. D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mission,” Adv. Space Res. 34, 700-709 (2004). [CrossRef]
  5. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  6. T. Hamazaki, A. Kuze, and K. Kondo, “Sensor system for greenhouse gas observing satellite (GOSAT),” Proc. SPIE 5543, 275-282 (2004).
  7. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 ?m solid-state laser,” Opt. Lett. 31, 462-464 (2006). [CrossRef]
  8. T. Refaat, W. Luck, and R. De Young, “Design of advanced atmospheric water vapor differential absorption lidar (DIAL) detection system,” NASA-TP 209348 (NASA, 1999).
  9. I. Andreev, M. Afrailov, A. Baranov, M. Mirsagatov, M. Mikhailova, and Y. Yakovlev, “GaInAsSb/GaAlAsSb avalanche photodiode with separate absorption and multiplication regions,” Sov. Tech. Phys. Lett. 14, 435-437 (1988).
  10. O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc. Optoelectron. 151, 1-5 (2004).
  11. T. Refaat, S. Ismail, T. Mack, N. Abedin, S. Mayor, S. Spuler, and U. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 46, 086001 (2007).
  12. O. Sulima, T. Refaat, M. Mauk, J. Cox, J. Li, S. Lohokare, N. Abedin, U. Singh, and J. Rand, “AlGaAsSb/InGaAsSb phototransistors for spectral range around 2 ?m,” Electron. Lett. 40, 766-767 (2004). [CrossRef]
  13. T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “AlGaAsSb/InGaAsSb phototransistors for 2-?m remote sensing applications,” Opt. Eng. 43, 1647-1650 (2004).
  14. N. Abedin, T. Refaat, O. Sulima, and U. Singh, “AlGaAsSb/InGaAsSb HPTs with high optical gain and wide dynamic range,” IEEE Trans. Electron. Devices 51, 2013-2018(2004).
  15. J. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, Vol. 22 of Lightwave Communications Technology, Part D, Photodetectors, R.Willardson and A.Beer, eds. (Academic, 1985), Chap. 5.
  16. S. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986). [CrossRef]
  17. M. Kavaya and R. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444-3453 (1985).
  18. L. Gurdev, T. Dreischuh, and D. Stoyanov, “Deconvolution techniques for improving the resolution of long-pulse lidars,” J. Opt. Soc. Am. A 10, 2296-2306 (1993).
  19. T. Dreischuh, L. Gurdev, and D. Stoyanov, “Effect of pulse-shape uncertainty on the accuracy of deconvolved lidar profiles,” J. Opt. Soc. Am. A 12, 301-306 (1996).
  20. D. Stoyanov, L. Gurdev, G. Kolarov, and O. Vankov, “Lidar profiling by long rectangular-like chopped laser pulses,” Opt. Eng. 39, 1556-1567 (2000).
  21. J. Gao and C. Ng, “Deconvolution filtering of ground-based lidar returns from tropospheric aerosols,” Appl. Phys. B 76, 587-592 (2003).
  22. S. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, and J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
  23. G. Matthews, “Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the Geostationary Earth Radiation Budget experiments,” Appl. Opt. 43, 6313-6322 (2004). [CrossRef]
  24. P. van Cittert, “Zum einfluss der spaltbreite auf die intesitatsveteilung in spektallinien,” Z. Phys. 69, 298-308 (1931). [CrossRef]
  25. A. Amini, “Iterative deconvolution with variable convergence speed of the iterations,” Appl. Opt. 34, 1878-1884 (1995).
  26. S. Mayor and S. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt. 43, 3915-3924 (2004). [CrossRef]
  27. T. Refaat, N. Abedin, O. Sulima, S. Ismail, and U. Singh, “InGaAsSb/AlGaAsSb heterojunction phototransistors for infrared applications,” Proc. SPIE 6295, 629503 (2006).
  28. S. Spuler and S. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 ?m,” J. Atmos. Ocean. Technol. 22, 696-703(2005). [CrossRef]
  29. K. Daugherty, Analog-to-Digital Conversion, A Practical Approach (McGraw-Hill, 1995), Chap. 9.
  30. C. Nachtigal, Instrumentation and Control, Fundamentals and Applications (Wiley, 1990), Chap. 2.
  31. V. Kovalev, “Distortions of the extinction coefficient profile caused by systematic errors in lidar,” Appl. Opt. 43, 3191-3198 (2004). [CrossRef]
  32. L. Fiorani and E. Durieux, “Comparison among error calculations in differential absorption lidar measurements,” Opt. Laser Technol. 33, 371-377 (2001).
  33. K. Gieck and R. Gieck, Engineering Formulas, 7th ed. (McGraw-Hill,1997), Chap. D .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited