OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5321–5324

Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges

Jiangbing Du, Yange Liu, Zhi Wang, Bing Zou, Bo Liu, and Xiaoyi Dong  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5321-5324 (2008)
http://dx.doi.org/10.1364/AO.47.005321


View Full Text Article

Enhanced HTML    Acrobat PDF (8993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature tuning properties of a liquid crystal (LC) photonic bandgap fiber’s bandgap transmission was investigated in this study. Because of the special temperature responses of the LC’s indices and its phase transition property, the bandgap transmission was found to have different temperature responses at different temperature ranges below the LC’s clearing point temperature. At temperatures lower or higher than the LC’s clearing point, the bandgap transmissions are quite different, which permits switching with an extinction ratio as large as 45 dB . At temperatures around the LC’s clearing point, the bandgap transmission was depressed.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 30, 2008
Revised Manuscript: August 17, 2008
Manuscript Accepted: August 29, 2008
Published: October 7, 2008

Citation
Jiangbing Du, Yange Liu, Zhi Wang, Bing Zou, Bo Liu, and Xiaoyi Dong, "Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges," Appl. Opt. 47, 5321-5324 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-29-5321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  3. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445-447 (1999). [CrossRef]
  4. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings,” IEEE Photon. Technol. Lett. 12, 495-497 (2000). [CrossRef]
  5. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.
  6. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express 16, 4263-4269 (2008). [CrossRef] [PubMed]
  7. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fiber,” Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  8. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  9. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  10. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  11. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, Anawati, J. Broeng, J. Li, and S. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express. 12, 5857-5871 (2004). [CrossRef] [PubMed]
  12. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901-7912 (2007). [CrossRef] [PubMed]
  13. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707-1709 (2007). [CrossRef] [PubMed]
  14. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  15. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261-2264 (2006). [CrossRef] [PubMed]
  16. J. Li, S. Gauza, S.-T. Wu, T. Alkeskjold, T. Tanggaard, J. Lægsgaard, and A. Bjarklev, “High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber,” Mol. Cryst. Liq. Cryst. 453, 355-370 (2006). [CrossRef]
  17. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” IEEE Electron. Lett. 42, 1270-1271 (2005). [CrossRef]
  18. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215-2217(2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited