OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5337–5340

Nitrogen dioxide monitoring using a blue LED

Feng Xu, Zhe Lv, Xiutao Lou, Yungang Zhang, and Zhiguo Zhang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5337-5340 (2008)
http://dx.doi.org/10.1364/AO.47.005337


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a monitoring technique for nitrogen dioxide based on broadband absorption spectroscopy using a blue light-emitting diode (LED) operating around 465 nm . The technique is suited for real-time measurements of nitrogen dioxide due to the use of a straightforward data evaluation method, limited interference from other gases, and a low degree of complexity compared with other real-time optical detection techniques having the same precision. Additionally, the use of a LED can reduce the cost of nitrogen dioxide monitoring. Real-time measurements of nitrogen dioxide concentration were demonstrated at atmospheric pressure, which is of great interest for industrial nitrogen dioxide emission monitoring; a detection limit of about 3 ppm using a 50 - cm -long gas cell with 2 s integration time was achieved.

© 2008 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.1030) Spectroscopy : Absorption
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Spectroscopy

History
Original Manuscript: March 10, 2008
Revised Manuscript: August 30, 2008
Manuscript Accepted: September 10, 2008
Published: October 7, 2008

Citation
Feng Xu, Zhe Lv, Xiutao Lou, Yungang Zhang, and Zhiguo Zhang, "Nitrogen dioxide monitoring using a blue LED," Appl. Opt. 47, 5337-5340 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-29-5337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).
  2. EU Council Directive 1999/30/EC, relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, and particulate matter and lead in ambient air (1999).
  3. People's Republic of China Directive 2003 relating to emission standard of air pollutants for thermal power plants (2003).
  4. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Physics Series (Wiley, 1994), pp. 27-84.
  5. U. Platt, D. Perner, and H. W. Pätz, “Simultaneous measurements of atmospheric CH2, O3, and NO2 by differential optical absorption,” J. Geophys. Res. 84, 6329-6335 (1979). [CrossRef]
  6. H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, “Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring,” Appl. Opt. 32, 327-333 (1993). [CrossRef] [PubMed]
  7. A. C. Vandaele, A. Tsouli, M. Carleer, and R. Colin, “UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene,” Environ. Pollut. 116, 193-201 (2002). [CrossRef] [PubMed]
  8. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077-2088 (2006). [CrossRef] [PubMed]
  9. K. A. Fredriksson and H. M. Hertz, “Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system,” Appl. Opt. 23, 1403-1411 (1984). [CrossRef] [PubMed]
  10. H. Edner, P. Ragnarson, and E. Wallinder, “Industrial emission control using lidar techniques,” Environ. Sci. Technol. 29, 330-337 (1995). [CrossRef] [PubMed]
  11. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt. 44, 5148-5151 (2005). [CrossRef] [PubMed]
  12. F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, “Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring,” Appl. Phys. Lett. 88, 231109 (2006). [CrossRef]
  13. F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, “Temperature-corrected spectroscopic evaluation method for gas concentration monitoring,” Appl. Phys. B 86, 361-364 (2007). [CrossRef]
  14. F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang, “Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions,” Appl. Opt. 46, 2503-2506 (2007). [CrossRef] [PubMed]
  15. S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and practical Applications (Springer, 2004), pp. 164-165.
  16. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME. Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031 (1998). [CrossRef]
  17. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-section from 42 000 cm?1 to 10 000 cm?1 (238-1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998). [CrossRef]
  18. A. C. Vandaele, C. Hermans, S. Fally, M. Carleer, M. F. Mérienne, A. Jenouvrier, B. Coquart, and R. Colin, “Absorption cross-sections of NO2: simulation of temperature and pressure effects,” J. Quant. Spectrosc. Radiat. Transfer 76, 373-391 (2003). [CrossRef]
  19. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998). [CrossRef]
  20. J. A. Davidson, C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, “Visible-ultraviolet absorption cross sections for NO2 as a function of temperature,” J. Geophys. Res. 93, 7105-7112 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited