OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5358–5369

Absolute phase estimation: adaptive local denoising and global unwrapping

Jose Bioucas-Dias, Vladimir Katkovnik, Jaakko Astola, and Karen Egiazarian  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5358-5369 (2008)
http://dx.doi.org/10.1364/AO.47.005358


View Full Text Article

Enhanced HTML    Acrobat PDF (6177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo- 2 π noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo- 2 π phase obtained in the first step. The adaptive local modulo- 2 π phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [ IEEE Trans. Image Process. 16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details.

© 2008 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(110.5086) Imaging systems : Phase unwrapping
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: June 13, 2008
Revised Manuscript: August 4, 2008
Manuscript Accepted: August 6, 2008
Published: October 7, 2008

Citation
Jose Bioucas-Dias, Vladimir Katkovnik, Jaakko Astola, and Karen Egiazarian, "Absolute phase estimation: adaptive local denoising and global unwrapping," Appl. Opt. 47, 5358-5369 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-29-5358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Graham, “Synthetic interferometer radar for topographic mapping,” Proc. IEEE 62, 763-768 (1974). [CrossRef]
  2. H. Zebker and R. Goldstein, “Topographic mapping from interferometric synthetic aperture radar,” J. Geophys. Res. 91, 4993-4999 (1986). [CrossRef]
  3. P. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190-191 (1973). [CrossRef]
  4. M. Hedley and D. Rosenfeld, “A new two-dimensional phase unwrapping algorithm for MRI images,” Magn. Reson. Med. 24, 177-181 (1992). [CrossRef] [PubMed]
  5. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  6. A. Patil and P. Rastogi, “Moving ahead with phase,” Opt. Lasers Eng. 45, 253-257 (2007). [CrossRef]
  7. K. Itoh, “Analysis of the phase unwrapping problem,” Appl. Opt. 21, 2470-2470 (1982). [CrossRef] [PubMed]
  8. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping. Theory, Algorithms, and Software (John Wiley & Sons, 1998).
  9. R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988). [CrossRef]
  10. K. Stetson, J. Wahid, and P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830-4838 (1997). [CrossRef] [PubMed]
  11. J. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. 12, 2393-2400(1995). [CrossRef]
  12. T. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692-2701(1997). [CrossRef]
  13. M. Costantini, “A novel phase unwrapping method based on network programing,” IEEE Trans. Geosci. Remote Sens. 36, 813-821 (1998). [CrossRef]
  14. M. Rivera, J. Marroquin, and R. Rodriguez-Vera, “Fast algorithm for integrating inconsistent gradient fields,” Appl. Opt. 36, 8381-8390 (1997). [CrossRef]
  15. J. Bioucas-Dias and J. Leitao, “The Z?M algorithm: a method for interferometric image reconstruction in SAR/SAS,” IEEE Trans. Image Process. 11, 408-422 (2002). [CrossRef]
  16. J. Bioucas-Dias and G. Valadão, “Phase unwrapping via graph cuts,” IEEE Trans. Image Process. 16, 698-709 (2007). [CrossRef]
  17. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304-317 (2007). [CrossRef]
  18. V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation Techniques in Signal and Image Processing (SPIE, 2006). [CrossRef]
  19. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase unwrapping with a regularized phase-tracking system,” Appl. Opt. 37, 1917-1923 (1998). [CrossRef]
  20. Z.-P. Liang, “A model-based method for phase unwrapping,” IEEE Trans. Med. Imag. 15, 893-897 (1996). [CrossRef]
  21. V. Pascazio and G. Schirinzi, “Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters,” IEEE Trans. Image Process. 11, 1478-1489 (2002). [CrossRef]
  22. M. Servin, F. J. Cuevas, D. Malacara, J. L. Marroguin, and R. Rodriguez-Vera, “Phase unwrapping through demodulation by use of the regularized phase-tracking technique,” Appl. Opt. 38, 1934-1941 (1999). [CrossRef]
  23. M. Servin and M. Kujawinska, “Modern fringe pattern analysis in interferometry,” Handbook of Optical Engineering, D. Malacara and B. J. Thompson, eds. (Dekker, 2001), Chap. 12, 373-426.
  24. H. Y. Yun, C. K. Hong, and S. W. Chang, “Least-square phase estimation with multiple parameters in phase-shifting electronic speckle pattern interferometry,” J. Opt. Soc. Am. A 20, 240-247 (2003). [CrossRef]
  25. Q. Kemao, L. T. H. Nam, L. Feng, and S. H. Soon, “Comparative analysis on some filters for wrapped phase maps,” Appl. Opt. 46, 7412-7418 (2007). [CrossRef] [PubMed]
  26. J. Bioucas-Dias, V. Katkovnik, J. Astola, and K. Egiazarian, “Adaptive local phase approximations and global unwrapping,” in 3DTV Conference: The True Vision -- Capture, Transmission and Display of 3D Video (IEEE, 2008), pp. 253-258. [CrossRef]
  27. V. Katkovnik, J. Astola, and K. Egiazarian, “Phase local approximation (PhaseLa) technique for phase unwrap from noisy data,” IEEE Trans. Image Process. 17, 833-846 (2008). [CrossRef]
  28. L. L. Scharf, Statistical Signal Processing, Detection Estimation and Time Series Analysis (Addison-Wesley, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited