OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5500–5518

Exact computation of image disruption under reflection on a smooth surface and Ronchigrams

Edwin Román-Hernández and Gilberto Silva-Ortigoza  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5500-5518 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (7216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use geometrical optics and the caustic-touching theorem to study, in an exact way, the change in the topology of the image of an object obtained by reflections on an arbitrary smooth surface. Since the procedure that we use to compute the image is exactly the same as that used to simulate the ideal patterns, referred to as Ronchigrams, in the Ronchi test used to test mirrors, we remark that the closed loop fringes commonly observed in the Ronchigrams when the grating, referred to as a Ronchi ruling, is located at the caustic place are due to a disruption of fringes, or, more correctly, as disruption of shadows corresponding to the ruling bands. To illustrate our results, we assume that the reflecting surface is a spherical mirror and we consider two kinds of objects: circles and line segments.

© 2008 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.4190) Imaging systems : Multiple imaging
(120.5700) Instrumentation, measurement, and metrology : Reflection
(220.4840) Optical design and fabrication : Testing

ToC Category:
Image Processing

Original Manuscript: July 1, 2008
Revised Manuscript: September 4, 2008
Manuscript Accepted: September 4, 2008
Published: October 8, 2008

Edwin Román-Hernández and Gilberto Silva-Ortigoza, "Exact computation of image disruption under reflection on a smooth surface and Ronchigrams," Appl. Opt. 47, 5500-5518 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry, “Disruption of images: the caustic-touching theorem,” J. Opt. Soc. Am. A 4, 561-569 (1987). [CrossRef]
  2. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, 1984).
  3. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, 1980).
  4. A. B. Fraser and W. H. Mach, “Mirages,” Sci. Am. 234, 102-111(1976). [CrossRef]
  5. W. Tape, “The topology of mirages,” Sci. Am. 252, 120-129(1985). [CrossRef]
  6. R. Narayan, R. Blandford, and R. Nityananda, “Multiple imaging of quasars by galaxies and clusters,” Nature 310, 112-115 (1984). [CrossRef]
  7. C. Hogan and R. Narayan, “Gravitational lensing by cosmic strings,” Mon. Not. R. Astron. Soc. 211, 575-591 (1984).
  8. A. O. Petters, H. Levine, and J. Wambsganss, Singularity Theory and Gravitational Lensing (Birkhäuser, 2001). [CrossRef]
  9. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437-451 (1964). [CrossRef]
  10. A. Cornejo-Rodriguez, “Ronchi test,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1978), Chap. 9.
  11. D. Malacara, “Geometrical Ronchi test of aspherical mirrors,” Appl. Opt. 4, 1371-1374 (1965). [CrossRef]
  12. A. A. Sherwood, “Quantitative analysis of the Ronchi test in terms of ray optics,” J. Br. Astron. Assoc. 68, 180-191 (1958).
  13. A. Cordero-Dávila, A. Cornejo-Rodriguez, and O. Cardona-Nuñez, “Ronchi and Hartmann tests with the same mathematical theory,” Appl. Opt. 31, 2370-2376 (1992). [CrossRef] [PubMed]
  14. A. Cordero-Dávila, J. Díaz-Anzures, and V. Cabrera-Peláez, “Algorithm for the simulation of Ronchigrams of arbitrary optical systems and Ronchi grids in generalized coordinates,” Appl. Opt. 41, 3866-3873 (2002). [CrossRef] [PubMed]
  15. G. Silva-Ortigoza, J. Castro-Ramos, and A. Cordero-Dávila, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror. II,” Appl. Opt. 40, 1021-1028(2001). [CrossRef]
  16. J. Castro-Ramos, O. de Ita Prieto, and G. Silva-Ortigoza, “Computation of the disk of least confusion for conic mirrors,” Appl. Opt. 43, 6080-6088 (2004). [CrossRef] [PubMed]
  17. V. I. Arnold, Catastrophe Theory (Springer-Verlag, 1986).
  18. V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, 1995), Vol I.
  19. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1980).
  20. D. L. Shealy and D. G. Burkhard, “Flux density ray propagation in discrete index media expressed in terms of the intrinsic geometry of the reflecting surface,” Opt. Acta 20, 287-301(1973). [CrossRef]
  21. D. L. Shealy, “Analytical illuminance and caustic surface calculations in geometrical optics,” Appl. Opt. 15, 2588-2596(1976). [CrossRef] [PubMed]
  22. D. L. Shealy and D. G. Burkhard, “Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic, paraboloid, and elliptic cone,” Appl. Opt. 12, 2955-2959(1973). [CrossRef] [PubMed]
  23. P. S. Theocaris, “Properties of caustics from conic reflectors. 1. Meridional rays,” Appl. Opt. 16, 1705-1716 (1977). [CrossRef] [PubMed]
  24. A. Cordero-Dávila and J. Castro-Ramos, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror,” Appl. Opt. 37, 6774-6778 (1998). [CrossRef]
  25. R. W. Hosken, “Circle of least confusion of a spherical reflector,” Appl. Opt. 46, 3107-3117 (2007). [CrossRef] [PubMed]
  26. M. V. R. K. Murty and A. H. Shoemaker, “Theory of concentric circular grid,” Appl. Opt. 5, 323-326 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited