OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 3 — Jan. 20, 2008
  • pp: 346–358

Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret  »View Author Affiliations


Applied Optics, Vol. 47, Issue 3, pp. 346-358 (2008)
http://dx.doi.org/10.1364/AO.47.000346


View Full Text Article

Enhanced HTML    Acrobat PDF (2178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May–June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

© 2008 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.2200) Scattering : Extinction
(290.5850) Scattering : Scattering, particles
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 15, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 3, 2007
Published: January 14, 2008

Citation
Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret, "Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients," Appl. Opt. 47, 346-358 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-3-346


Sort:  Year  |  Journal  |  Reset  

References

  1. J. A. Coakley, R. D. Cess, and F. B. Yurevich, "The effect of troposheric aerosols on the earth's radiation budget: a parameterization for climate models," J. Atmos. Sci. 40, 116-138 (1983). [CrossRef]
  2. J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  3. A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-142.
  4. D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, "Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar," J. Atmos. Ocean. Technol. 24, 1377-1388 (2007). [CrossRef]
  5. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation," Appl. Opt. 22, 3716-3724 (1983). [CrossRef] [PubMed]
  6. H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983). [CrossRef] [PubMed]
  7. R. J. Alvarez, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar measurement of troposheric backscatter-ratio with barium atomic blocking filters," J. Atmos. Ocean. Technol. 7, 876-881 (1990). [CrossRef]
  8. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001). [CrossRef]
  9. P. Piironen and E. W. Eloranta, "Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter," Opt. Lett. 19, 234-236 (1994). [CrossRef] [PubMed]
  10. Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999). [CrossRef]
  11. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2000JD000202 (2002). [CrossRef]
  12. R. Ferrare, C. Hostetler, J. Hair, A. Cook, D. Harper, S. Burton, M. Clayton, A. Clarke, P. Russell, and J. Redemann, "Airborne high spectral resolution lidar aerosol measurements during MILAGRO and TEXAQS/GOMACCS," presented at the 87th Annual Meeting of the American Meteorological Society, San Antonio, Texas, 14-18 January 2007. [PubMed]
  13. A. Stoffelen, J. Pailleux, E. Källn, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005). [CrossRef]
  14. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, "Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations," Appl. Opt. 46, 6606-6622 (2007). [CrossRef] [PubMed]
  15. A. Petzold, B. Weinzierl, M. Esselborn, G. Ehret, M. Fiebig, A. Fix, C. Kiemle, K. Rasp, and M. Wirth, "Technical support of the EarthCARE Mission for the validation of spaceborne aerosol products during the Saharan Mineral Dust Experiment," European Space Research and Technology Centre (ESTEC) contract 19429/06/NL/AR (2007).
  16. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1975).
  17. R. Miles, W. Lempert, and J. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, 33-51 (2001). [CrossRef]
  18. A. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981). [CrossRef] [PubMed]
  19. C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001). [CrossRef]
  20. S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode. Atlas III (Edition du CNRS, 1978).
  21. G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).
  22. A. T. Young and G. W. Kattawar, "Rayleigh-scattering line profiles," Appl. Opt. 22, 3668-3670 (1983). [CrossRef] [PubMed]
  23. J. N. Forkey, Precision Optics Corporation, 22 East Broadway, Gardner, Massachusetts 01440 (personal communication, 2005).
  24. J. N. Forkey, W. R. Lempert, and R. B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG wavelengths," Appl. Opt. 36, 6729-6738 (1997). [CrossRef]
  25. G. W. Kattawar, A. T. Young, and T. J. Humphreys, "Inelastic scattering in planetary atmospheres. 1. The Ring effect, without aerosols," Astrophys. J. 243, 1049-1057 (1981). [CrossRef]
  26. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  27. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, "On Rayleigh optical depth calculations," J. Atmos. Ocean. Technol. 16, 1854-1861 (1999). [CrossRef]
  28. A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least square procedures," Anal. Chem. 36, 1627-1639 (1964). [CrossRef]
  29. J. Biele, G. Beyerle, and G. Baumgarten, "Polarization lidar: corrections of instrumental effects," Opt. Express 7, 427-435 (2000). [CrossRef] [PubMed]
  30. A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002). [PubMed]
  31. R. A. Ferrare, D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, "Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains," J. Geophys. Res. 106, 20333-20348 (2001). [CrossRef]
  32. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, "Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China," Appl. Opt. 46, 6302-6308 (2007). [CrossRef] [PubMed]
  33. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, "Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy," Appl. Phys. B 75, 165-172 (2002). [CrossRef]
  34. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Poberaj, S. Berger, S. Geiger, and Q. Lü, "High peak and average power all-solid-state laser systems for airborne lidar applications," LaserOpto 32, 29-37 (2000).
  35. R. L. Schmitt and L. A. Rahn, "Diode-laser-pumped Nd:YAG laser injection seeding system," Appl. Opt. 25, 629-633 (1986). [CrossRef] [PubMed]
  36. M. Fiebig, C. Stein, F. Schröder, P. Feldpausch, and A. Petzold, "Inversion of data containing information on the aerosol particle size distribution using multiple instruments," J. Aerosol Sci. 36, 1353-1372 (2005). [CrossRef]
  37. A. Petzold, M. Fiebig, H. Flentje, A. Keil, U. Leiterer, F. Schröder, A. Stifter, M. Wendisch, and P. Wendling, "Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98)," J. Geophys. Res. 107(D21), 8125, doi:10.1029/2001JD001043 (2002). [CrossRef]
  38. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmos. Ocean. Technol. 17, 1469-1482 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited