OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 3 — Jan. 20, 2008
  • pp: 399–406

Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement

Yanfeng Li, Yuhong Yao, Minglie Hu, Lu Chai, and Chingyue Wang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 3, pp. 399-406 (2008)
http://dx.doi.org/10.1364/AO.47.000399


View Full Text Article

Enhanced HTML    Acrobat PDF (2392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the effective index method, which models photonic crystal fibers by means of a step-index waveguide analogy, two critical parameters are the effective index of the cladding and the effective core radius. It has been shown that the use of an effective core radius as a function of the relative air hole diameter, or also of the relative wavelength, can improve the accuracy of this method. We show, by comparison with a rigorous finite-difference frequency-domain method, that the reported improved fully vectorial effective index methods have commonly adopted a radius of the equivalent circular unit cell, which does not give the best accurate effective cladding index as compared with the use of an equivalent circular unit cell having the same area as the hexagonal unit cell. Furthermore, by defining both the radius of the equivalent circular unit cell and the effective core radius as a function of the relative air hole diameter, and the relative wavelength, we believe that the fully vectorial effective index method can be further enhanced in terms of accuracy of both the effective cladding index and the modal index.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 26, 2007
Manuscript Accepted: November 16, 2007
Published: January 17, 2008

Citation
Yanfeng Li, Yuhong Yao, Minglie Hu, Lu Chai, and Chingyue Wang, "Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement," Appl. Opt. 47, 399-406 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-3-399


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer, 2003). [CrossRef]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  4. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000). [CrossRef]
  5. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002). [PubMed]
  6. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  7. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  8. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  9. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 748-752 (1998). [CrossRef]
  10. R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003). [CrossRef]
  11. T. Sørensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S. E. B. Libori, H. R. Simonsen, and J. R. Jensen, "Spectral macro-bending loss considerations for photonic crystal fibres," IEE Proc. : Optoelectron. 149, 206-210 (2002).
  12. Y. Li, C. Wang, and M. Hu, "A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation," Opt. Commun. 238, 29-33 (2004). [CrossRef]
  13. M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). [CrossRef]
  14. R. K. Sinha and A. D. Varshney, "Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods," Opt. Quantum Electron. 37, 711-722 (2005). [CrossRef]
  15. M. D. Nielson, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, "Mode-field radius of photonic crystal fibers expressed by the V parameter," Opt. Lett. 28, 2309-2311 (2003). [CrossRef]
  16. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 29, 1739-1741 (2004). [CrossRef] [PubMed]
  17. M. Koshiba and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005). [CrossRef]
  18. Y. Li, C. Wang, N. Zhang, C. Wang, and Q. Xing, "Analysis and design of terahertz photonic crystal fibers by an effective-index method," Appl. Opt. 45, 8462-8465 (2006). [CrossRef] [PubMed]
  19. A. D. Varshney and R. K. Sinha, "Study of birefringence of elliptical core photonic crystal fiber using Mathieu function," Appl. Opt. 46, 5912-5916 (2007). [CrossRef] [PubMed]
  20. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, "The analogy between photonic crystal fibres and step index fibres," in Technical Digest of the Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC '99 (IEEE, 1999), pp. 114-116. [CrossRef]
  21. K. N. Park and K. S. Lee, "Improved effective-index method for analysis of photonic crystal fibers," Opt. Lett. 30, 958-960 (2005). [CrossRef] [PubMed]
  22. Y.-Z. Xu, X.-M. Ren, X. Zhang, and Y.-Q. Huang, "A fully vectorial effective index method for accurate dispersion calculation of photonic crystal fibres," Chin. Phys. Lett. 23, 2476-2479 (2006). [CrossRef]
  23. H. Li, A. Mafi, A. Schülzgen, L. Li, V. L. Temyanko, N. Peyghambarian, and J. V. Moloney, "Analysis and design of photonic crystal fibers based on an improved effective-index method," J. Lightwave Technol. 25, 1224-1230 (2007). [CrossRef]
  24. X. Zhao, L. Hou, Z. Liu, W. Wang, G. Zhou, and Z. Hou, "Improved fully vectorial effective index method in photonic crystal fiber," Appl. Opt. 46, 4052-4056 (2007). [CrossRef] [PubMed]
  25. Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, "Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches," Appl. Phys. B 85, 597-601 (2006). [CrossRef]
  26. K. N. Park, T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun. 266, 541-545 (2006). [CrossRef]
  27. Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, "Analytical solution of the fundamental space filling mode of photonic crystal fibers," Opt. Laser Technol. 39, 322-326 (2007). [CrossRef]
  28. M. Eguchi and Y. Tsuji, "Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode," Opt. Lett. 32, 2112-2114 (2007). [CrossRef] [PubMed]
  29. Z. Zhu and T. G. Brown, "Analysis of the space filling modes of photonic crystal fibers," Opt. Express 8, 547-554 (2001). [CrossRef] [PubMed]
  30. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, "Comparison of different methods for rigorous modeling of photonic crystal fibers," Opt. Express 14, 5699-5714 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited