OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 30 — Oct. 20, 2008
  • pp: 5557–5561

Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair

Yuan-Fong Chau, Han-Hsuan Yeh, and Din Ping Tsai  »View Author Affiliations

Applied Optics, Vol. 47, Issue 30, pp. 5557-5561 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field optical properties and surface plasmon effects in a silver-shell nanocylinder pair with five different dielectric holes (DHs) that interact with a transverse magnetic mode incident plane wave are simulated by use of the finite-element method, which includes the investigation of particle–particle interaction. The proposed structure exhibits a redshifted localized surface plasmon that can be tuned over an extended wavelength range by varying the dielectric constant in DHs and the thickness of the nanocylinder silver shell. The increase in the near-field intensity is attributed to a larger effective size of DH that is filled with a higher refractive medium.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optics at Surfaces

Original Manuscript: April 28, 2008
Revised Manuscript: August 3, 2008
Manuscript Accepted: August 13, 2008
Published: October 13, 2008

Yuan-Fong Chau, Han-Hsuan Yeh, and Din Ping Tsai, "Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair," Appl. Opt. 47, 5557-5561 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002). [CrossRef] [PubMed]
  2. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  3. W. Dickson, G. A. Wurtz, P. Evans, D. O'Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76, 115411 (2007). [CrossRef]
  4. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006). [CrossRef]
  5. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003). [CrossRef]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  7. P. Ghenuche, R. Quidant, and G. Badenes, “Cumulative plasmon field enhancement in finite metal particle chains,” Opt. Lett. 30, 1882-1884 (2005). [CrossRef] [PubMed]
  8. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  9. S. Nie and S. R. Emory, ”Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1101-1106 (1997). [CrossRef]
  10. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W.Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  11. E. Prodan, , P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett. 3, 1411-1415 (2003). [CrossRef]
  12. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257 (2003). [CrossRef]
  13. P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.
  14. COMSOL Multiphysics, http://www.comsol.com.
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  16. T.Okamoto, “Near-field spectral analysis of metallic beads.” in Near-Field Optics and Surface Plasmon Polaritons, Vol. 81 of Topics in Applied Physics, S. Kawata, M. Ohtsu, and M. Irie, eds. (Springer, 2001), p. 99. [CrossRef]
  17. Y.-F. Chau and D. P. Tsai, “Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure,” Opt. Commun. 269, 389-394 (2007). [CrossRef]
  18. Y. Chen, Y. Wang, Y. Zhang, and S. Liu, “Numerical investigation of the transmission enhancement through subwavelength hole array,” Opt. Commun. 274, 236-240 (2007). [CrossRef]
  19. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  20. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  21. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316-4318 (2004). [CrossRef]
  23. Y.-F. Chau, T.-J. Yang, and D. P. Tsai, “Imaging properties of three dimensional aperture near-field scanning optical microscopy and optimized near-field fiber probe designs,” Jpn. J. Appl. Phys. 43, 8115-8125 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited