OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 30 — Oct. 20, 2008
  • pp: 5592–5603

Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements

Thierry Leblanc and I. Stuart McDermid  »View Author Affiliations


Applied Optics, Vol. 47, Issue 30, pp. 5592-5603 (2008)
http://dx.doi.org/10.1364/AO.47.005592


View Full Text Article

Enhanced HTML    Acrobat PDF (18076 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks.

© 2008 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 18, 2008
Revised Manuscript: September 5, 2008
Manuscript Accepted: September 10, 2008
Published: October 13, 2008

Citation
Thierry Leblanc and I. Stuart McDermid, "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements," Appl. Opt. 47, 5592-5603 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-30-5592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. M. Forster and K. P. Shine, “Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling,” Geophys. Res. Lett. 26, 3309-3312 (1999). [CrossRef]
  2. S. J. Oltmans and D. J. Hofmann, “Increase in lower stratospheric water vapor at a midlatitude Northern Hemisphere site from 1981 to 1994,” Nature 374, 146-149 (1995). [CrossRef]
  3. “Assessment of upper tropospheric and stratospheric water vapor,” in SPARC Report No 2, D. Kley, J. M. Russell, III, and C. Phillips, eds. (Stratospheric Processes and Their Role in Climate, 2000).
  4. M. J. Kurylo, “Network for the detection of stratospheric change,” Proc. SPIE 1491, 168-174 (1991). [CrossRef]
  5. G. Vaughan, D. P. Waring, L. Thomas, and V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471-1484 (1988). [CrossRef]
  6. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838-5850 (1999). [CrossRef]
  7. D. N. Whiteman, B. Demoz, P. Di Girolamo, DIFA J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. Van Hove., “Raman water vapor lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques,” J. Atmos. Ocean. Technol. 23, 157-169 (2006). [CrossRef]
  8. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979-4990 (1998). [CrossRef]
  9. T. Leblanc, I. S. McDermid, and R. Aspey, “First year operation of a new water vapor Raman lidar at the JPL-Table Mountain Facility, California,” J. Atmos. Ocean. Technol. , doi: 10.1175/2007JTECHA978.1 (to be published). [CrossRef]
  10. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Methodology for the independent calibration of Raman backscatter water vapor lidar systems,” Appl. Opt. 38, 5816-5837 (1999). [CrossRef]
  11. U. Wandlinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241-271.
  12. A. Paukkunen, V. Antikainen, and H. Jauhiainen, “The accuracy and performance of the new Vaisala RS90 radiosonde in operational use,” in Proceedings of 11th Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 2001), pp. 98-103.
  13. H. Vömel, D. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer (CFH): instrumental details and observations,” J. Geophys. Res. 112, D18309 (2007). [CrossRef]
  14. V. Yushkov, V. Astakhov, and S. Merkulov, “Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements,” Proc. SPIE 3501, 439-445 (1998). [CrossRef]
  15. B. G. Bevis, S. Bussinger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, “GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system,” J. Geophys. Res. 97, 15787-15801 (1992).
  16. G. E. Nedoluha, R. M. Bevilacqua, R. M. Gomez, D. L. Thacker, W. B. Waltman, and T. A. Pauls, “Ground-based measurements of water vapor in the middle atmosphere,” J. Geophys. Res. 100, 2927-2939 (1995). [CrossRef]
  17. D. D. Turner, R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37-49 (2002). [CrossRef]
  18. L. M. Miloshevich, A. Paukkunen, H. Vömel, and S. J. Oltmans, “Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements,” J. Atmos. Ocean. Technol. 21, 1305-1327 (2004). [CrossRef]
  19. T. Leblanc, Jet Propulsion Laboratory-Table Mountain Facility, POB 367, 24490 Table Mountain Road, Wrightwood, Calif. 92397, USA, is preparing a manuscript to be called “Measurements of humidity in the atmosphere and validation experiments (MOHAVE and MOHAVE-II).”
  20. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, A. Dabas, Claude Loth, and J. Pelon, eds. (Edition de l'Ecole Polytechnique, 2001), pp. 155-158.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited