OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 30 — Oct. 20, 2008
  • pp: 5682–5690

Integrated photonic coupler based on frustrated total internal reflection

Nathan R. Huntoon, Marc P. Christensen, Duncan L. MacFarlane, Gary A. Evans, and C. S. Yeh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 30, pp. 5682-5690 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical coupler for integrated photonic circuits is presented and analyzed. The coupler is based on frustrated total internal reflection (FTIR) and offers high efficiency in a compact footprint. Analytic expressions for the transmission and reflection coefficients of the coupler are obtained using a plane-wave theory and experimentally verified. Finite-difference time-domain modeling of FTIR is discussed and modeling results of the coupler are presented. A parametric discussion of the FTIR coupler provides design tools for making 3 dB couplers.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(260.6970) Physical optics : Total internal reflection

ToC Category:
Integrated Optics

Original Manuscript: May 16, 2008
Manuscript Accepted: August 14, 2008
Published: October 16, 2008

Nathan R. Huntoon, Marc P. Christensen, Duncan L. MacFarlane, Gary A. Evans, and C. S. Yeh, "Integrated photonic coupler based on frustrated total internal reflection," Appl. Opt. 47, 5682-5690 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. K. Burns, R. P. Moeller, C. H. Bulmer, and H. Yajima, “Optical waveguide channels in Ti-diffused LiNbO3,” Appl. Opt. 19, 2890-2896 (1980).
  2. M. Kuznetsov, “Radiation loss in dielectric waveguide Y-branch structures,” J. Lightwave Technol. 3, 674-677 (1985). [CrossRef]
  3. M. Maeda, T. Hirata, M. Surfiuro, M. Hihara, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys. 31, L183 (1992). [CrossRef]
  4. T. D. Ni, D. Sturzebecher, A. Paolella, and B. Perlman, “Novel polymer optical couplers based on symmetry mode mixing,” IEEE Photon. Technol. Lett. 7, 1186-1188 (1995). [CrossRef]
  5. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135-1146 (1985). [CrossRef]
  6. J. P. Donnelly, H. Haus, and L. Molter, “Cross power and crosstalk in waveguide couplers,” J. Lightwave Technol. 6, 257-268(1988). [CrossRef]
  7. M. Raburn, B. Liu, K. Rauscher, T. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron. 8, 935-942 (2002). [CrossRef]
  8. S. W. Ahn and S. Y. Shin, “Grating assisted codirectional coupler filter using electro-optic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7, 819-825(2001). [CrossRef]
  9. W. Huang, B. E. Little, and S. K. Chaudhuri, “A new approach to grating assisted couplers,” J. Lightwave Technol. 9, 721-727 (1991). [CrossRef]
  10. N. H. Sun, J. K. Butler, G. A. Evans, L. Pang, and P. Congdon, “Analysis of grating-assisted directional couplers using the Floquet-Bloch theory,” J. Lightwave Technol. 15, 2301-2315(1997). [CrossRef]
  11. J. K. Butler, N. H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol. 16, 1038-1048(1998). [CrossRef]
  12. S. Akiyama, M. A. Popovic, P. T. Rakich, K. Wada, J. Michel, H. A. Haus, E. P. Ippen, and L. C. Kimerling, “Air trench bends and splitters for dense optical integration in low index contrast,” J. Lightwave Technol. 23, 2271-2277 (2005). [CrossRef]
  13. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54 , 601-607 (1986). [CrossRef]
  14. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190-1197 (1964).
  15. G. E. Musset, O. Boquilloin, and J. P. Forth, “High performance, diode pumped, Q-switched Er:Yb:glass laser with FTIR shutter,” in Proceedings of the IEEE Conference on Lasers and Electro-Optics in Europe (IEEE, 2000), p. 1.
  16. I. N. Court and F. K. von Willisen, “Frustrated total internal reflection and applications of its principles to laser cavity design,” Appl. Opt. 3, 719-726 (1964).
  17. D. Axelrod, “Cell-substrate illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981). [CrossRef]
  18. D. J. Bossert, R. K. DeFreez, H. Ximen, R. A. Elliot, M. M. Hunt, G. A. Wilson, J. Orloff, G. A. Evans, N. W. Carlson, M. Lurie, J. M. Hammer, D. P. Bour, and S. L. Palfrey, “Grating-surface-emitting lasers in a ring configuration,” Appl. Phys. Lett. 56, 2068-2070 (1990). [CrossRef]
  19. E. Yablonovitch, T. J. Gmitter, and K. M. Yeung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef]
  20. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef]
  21. K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propagat. Mag. 37, 39-56 (1995). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2005).
  23. E. A. Navarro, T. M. Bordallo, and J. Navasquillo-Miralles, “FDTD characterization of evanescent modes--multimode analysis of waveguide discontinuities,” IEEE Trans. Microwave Theory Technol. 48, 606-610 (2000). [CrossRef]
  24. L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss, “Fabrication of photonic crystals using a spin-coated hydrogen silsesquioxane hard mask,” J. Vac. Sci. Technol. B 25, 387-393 (2007). [CrossRef]
  25. H. Shin, D. Jeong, J. Lee, M. M. Sung, and J. Kim, “Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness,” Adv. Mater. 16, 1197-1200 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited