OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 30 — Oct. 20, 2008
  • pp: 5715–5721

Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer

Hojeong Ryu, Soon Joon Yoon, and Donghyun Kim  »View Author Affiliations


Applied Optics, Vol. 47, Issue 30, pp. 5715-5721 (2008)
http://dx.doi.org/10.1364/AO.47.005715


View Full Text Article

Acrobat PDF (602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of surface roughness on the polarimetric performance of a wire-grid polarizer (WGP) is numerically investigated using rigorous coupled-wave analysis over 100 random surface realizations. Surface roughness is modeled with a Gaussian surface, represented by two independent parameters: surface height deviation and correlation length of a profile. The results show that WGP performance can suffer from significant degradation as well as increased deviation with surface roughness, although the extent varies with specific parameters. The influence of roughness was also examined with respect to grating period as a WGP parameter and incident light properties, such as wavelength and angle.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(240.5770) Optics at surfaces : Roughness
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 1, 2008
Revised Manuscript: September 1, 2008
Manuscript Accepted: September 15, 2008
Published: October 17, 2008

Citation
Hojeong Ryu, Soon Joon Yoon, and Donghyun Kim, "Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer," Appl. Opt. 47, 5715-5721 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-30-5715


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Tyan, A. Salvekar, H. Chou, C. Cheng, A. Scherer, F. Xu, P. C. Sun, and Y. Fainman, “Design, fabrication and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627-1636 (1997). [CrossRef]
  2. E. Chen and S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673-2675 (1997). [CrossRef]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s polarization resonance effect at the 0.8 μm wavelength band,” Opt. Lett. 22, 419-421 (1997). [CrossRef]
  4. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, and E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” Proc. SPIE 3754, 137-143 (1999).
  5. D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single-pixel design and fabrication,” Appl. Opt. 42, 3756-3764 (2003). [CrossRef]
  6. D. Kim and K. Burke, “Design of a grating-based thin film filter for broadband spectro-polarimetry,” Appl. Opt. 42, 6321-6326 (2003). [CrossRef]
  7. H.-L. Kuo, C.-H. Chiu, and P.-C. Chen, “A novel wire grid polarizer,” in SID 04 Digest (Society for Information Display, 2004), pp. 732-735.
  8. Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125-3127 (2007). [CrossRef]
  9. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33, 258-260 (2008). [CrossRef]
  10. D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44, 1366-1371 (2005). [CrossRef]
  11. S. Arnold, E. Gardner, D. Hansen, and R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282-1285.
  12. X.-J. Yu and H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Appl. Opt. 42, 6335-6341 (2003). [CrossRef]
  13. X.-D. Mi, D. Kessler, L. W. Tutt, and L. Weller-Brophy, “Low-fill-factor wire-grid polarizers for LCD backlighting,” in SID 05 Digest (Society for Information Display, 2005), pp. 1004-1007.
  14. S. J. Lee, M. J. Kim, H. J. Min, H. S. Kim, S. C. Kang, S. E. Lee, K. H. Park, J. H. Oh, S. H. Kim, D. H. Kang, J. S. Choi, S. M. Hong, J. H. Hur, and J. Jang, “A wire grid stereoscopic display,” in SID 06 Digest (Society for Information Display, 2006), pp. 89-92.
  15. S. H. Kim, J.-D. Park, and K.-D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnol. 17, 4436-4438 (2006).
  16. D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25, 558-565(2008). [CrossRef]
  17. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnol. 16, 1874-1877 (2005).
  18. D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44, 5398-5402 (2005). [CrossRef]
  19. Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, “Silver nanowire array infrared polarizers,” Nanotechnol. 14, 20-24(2003).
  20. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007). [CrossRef]
  21. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  22. T. R. Michel, M. E. Knotts, and K. A. O'Donnell, “Scattering by plasmon polaritons on a rough surface with a periodic component,” J. Opt. Soc. Am. A 12, 548-559(1995).
  23. R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269-275 (1902).
  24. J. W. S. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60-65(1907).
  25. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997), Chap. 8, pp. 285-322.
  26. F. A. Sadjadi and C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740-751 (2001).
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
  29. Y. Kuga, J. S. Colburn, and P. Phu, “Millimetre-wave scattering from one-dimensional surfaces of different surface correlation functions,” Waves Random Media 3, 101-110(1993). [CrossRef]
  30. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007). [CrossRef]
  31. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Institute of Physics, 1991).
  32. F. W. Millet and K. F. Warnick, “Validity of rough surface backscattering models,” Waves Random Media 14, 327-347(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited