OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: 5728–5735

Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers

A. Ksendzov, T. Lewi, O. P. Lay, S. R. Martin, R. O. Gappinger, P. R. Lawson, R. D. Peters, S. Shalem, A. Tsun, and A. Katzir  »View Author Affiliations

Applied Optics, Vol. 47, Issue 31, pp. 5728-5735 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the modal filtering properties of newly developed single mode silver halide fibers for use at midinfrared wavelengths, centered at 10.5 μm . The goal was to achieve a suppression of nonfundamental modes greater than a factor of 300 to enable the detection and characterization of Earthlike exoplanets with a space-based nulling interferometer. Fiber segments of 4.5 cm , 10.5 cm , 15 cm , and 20 cm lengths were tested. We find that the performance of the fiber was limited not by the modal filtering properties of the core but by the unsuppressed cladding modes present at the output of the fiber. In 10.5 cm and longer sections, this effect can be alleviated by properly aperturing the output. Exclusive of coupling losses, the fiber segments of 10.5 20 cm length can provide power suppression of undesirable components of the input field by a factor of 15000 at least. The demonstrated performance thus far surpasses our requirements, such that even very short sections of fiber provide adequate modal filtering for exoplanet characterization.

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 22, 2008
Manuscript Accepted: September 8, 2008
Published: October 21, 2008

A. Ksendzov, T. Lewi, O. P. Lay, S. R. Martin, R. O. Gappinger, P. R. Lawson, R. D. Peters, S. Shalem, A. Tsun, and A. Katzir, "Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers," Appl. Opt. 47, 5728-5735 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, eds., The Terrestrial Planet Finder (Jet Propulsion Laboratory, 1998).
  2. P. R. Lawson, O. P. Lay, S. R. Martin, R. D. Peters, R. O. Gappinger, D. P. Scharf, A. J. Booth, C. A. Beichman, E. Serabyn, K. J. Johnston, and W. C. Danchi, “Terrestrial planet finder interferometer: 2007-2008 progress and plans,” Proc. SPIE 7013, 70132N (2008). [CrossRef]
  3. C. S. Cockell, A. Leger, M. Fridlund, T. Herbst, L. Kaltenegger, O. Absil, C. Beichman, W. Benz, M. Blanc, A. Brack, A. Chelli, L. Colangeli, H. Cottin, V. Coude du Foresto, W. Danchi, D. Defrere, J.-W. den Herder, C. Eiroa, J. Greaves, T. Henning, K. Johnston, H. Jones, L. Labadie, H. Lammer, R. Launhardt, P. Lawson, O. P. Lay, J.-M. LeDuigou, R. Liseau, F. Malbet, S. R. Martin, D. Mawet, D. Mourard, C. Moutou, L. Mugnier, F. Paresce, A. Quirrenbach, Y. Rabbia, J. A. Raven, H. J. A. Rottgering, D. Rouan, N. Santos, F. Selsis, E. Serabyn, H. Shibai, M. Tamura, E. Thiebaut, F. Westall, G.White, and J. Glenn, “DARWIN--a mission to detect, and search for life on, extrasolar planets,” Astrobiology (to be published). [PubMed]
  4. R. D. Peters, O. P. Lay, and M. Jeganathan, “Broadband phase and intensity compensation with a deformable mirror for an interferometric nuller,” Appl. Opt. 47, 3920-3926 (2008). [CrossRef] [PubMed]
  5. A. Ksendzov, O. Lay, S. Martin, J. S. Sanghera, L. E. Busse, W. H. Kim, P. C. Pureza, V. Q. Nguyen, and I. D. Aggarwal, “Characterization of mid-infrared single mode fibers as modal filters,” Appl. Opt. 46, 7957-7962 (2007). [CrossRef] [PubMed]
  6. S. Sade, O. Eyal, V. Scharf, and A. Katzir, “Fiber-optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 1908-1914 (2002). [CrossRef] [PubMed]
  7. G. L. Clark and C. Roychoudhuri, “Interferometry through single-mode optical fibers,” Proc. SPIE 192, 196-203(1979).
  8. M. Ollivier and J.-M. Mariotti, “Improvement in the rejection rate of a nulling interferometer by spatial filtering,” Appl. Opt. 36, 5340-5346 (1997). [CrossRef] [PubMed]
  9. B. Mennesson, M. Ollivier, and C. Rullier, “Use of single-mode waveguides to correct the optical defects of a nulling interferometer,” J. Opt. Soc. Am. A 19, 596-602 (2002). [CrossRef]
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  11. O. Wallner, W. R. Leeb, and P. J. Winzer, “Minimum length of a single-mode fiber spatial filter,” J. Opt. Soc. Am. A 19, 2445-2448 (2002). [CrossRef]
  12. S. Shalem, A. Tsun, E. Rave, A. Milo, L. Nagli, and A. Katzir, “Silver halide single mode fibers for the middle infrared,” Appl. Phys. Lett. 87, 091103 (2005). [CrossRef]
  13. T. Lewi, S. Shalem, A. Tsun, and A. Katzir, “Silver halide single mode fibers with improved properties in the middle infrared,” Appl. Phys. Lett. 91, 251112 (2007). [CrossRef]
  14. M. Young, Optics and Lasers: Including Fibers and Optical Waveguides (Springer-Verlag, 1994), p. 296.
  15. R. G. Brown and B. N. Derick, “Plastic fiber optics. II: Loss measurements and loss mechanisms,” Appl. Opt. 7, 1565-1569 (1968). [CrossRef] [PubMed]
  16. E. M. Drège, N. G. Skinner, and D. M. Byrne, “Analytical far-field divergence angle of a truncated Gaussian beam,” Appl. Opt. 39, 4918-4925 (2000) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited